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UNIVERSITY. Dan Klein and Pieter Abbeel Al class at UC Berkeley



Announcements

* HW 2 is due tomorrow night.

* PA 1is due Feb 15t You should have started by now.

* First mastery quiz due this Friday. Topics will be posted on the website.
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Learning Objectives for Today

* Informed Search
e Heuristics

* Greedy Search
e A* Search

* Graph Search
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Search Recap
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Search Recap

* Search problem:
 States (configurations of the world)
e Actions and costs
* Successor function (world dynamics)
 Start state and goal test

e Search tree:
* Nodes: represent plans for reaching states
* Plans have costs (sum of action costs)

e Search algorithm:

e Systematically builds a search tree
* Chooses an ordering of the fringe (unexplored nodes)
e Optimal: finds least-cost plans
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Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES
Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
e — Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.
\ —=...... |

I | Received 18 January 1978

Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(o) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all o in (the symmetric group) S,. We show that f(n)=(5n+5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, each integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—-1=g(n)=2n+3.

Cost: Number of pancakes flipped
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Example: Pancake Problem

State space graph with costs as weights
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General Tree Search

function TREB-SEARCH( problem, strateqy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree
end

N s >
Action: flip top two A(  Path to reach goal:

Cost: 2 Flip four, flip three

/ i Total cost: 7
>
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Search — Only Differences are in the Queue

e All these search algorithms are the
same except for fringe strategies L@ D\‘ 1) \Eo\a\éﬂgﬂl _ \iﬂ‘\

* Conceptually, all fringes are priority
qgueues (i.e. collections of nodes with
attached priorities)

* Practically, for DFS and BFS, you can
avoid the log(n) overhead from an
actual priority queue, by using stacks
and queues

* Can even code one implementation thaf
takes a variable queuing object
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Uniform Cost Search

 Strategy: expand lowest path cost

* The good: UCS is complete and optimall!

* The bad:
* Explores options in every “direction”
* No information about goal location Goal
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Informed Search
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Search Heuristic

A function that estimates how close a state is to a goal
Designed for a particular search problem

Examples: Manhattan distance, Euclidean distance for
pathing
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Example: Heuristic Function
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Example: Heuristic Function

h(x)
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Greedy Search
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[Jolasim———

* Expand the node that seems closest...

[} Mehadia

Arad >

Dobreta []

Eforie

] Giurgiu

 Sbiu

329 374

380 193

366

253 0

* What can go wrong?
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Greedy Search

e Strategy: expand a node that you think is
closest to a goal state

* Heuristic: estimate of distance to nearest goal for
each state

* A common case:
» Best-first takes you straight to the (wrong) goal

* Worst-case: like a badly-guided DFS
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A* Search
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Combining UCS and Greedy

* Uniform-cost orders by path cost, or backward cost g(n)
* Greedy orders by goal proximity, or forward cost h(n)

8

h=2 h=0

e A* Search orders by the sum: f(n) = g(n) + h(n)
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When should A* terminate?

* Should we stop when we enqueue a goal?

h=2

* No: only stop when we degueue a goal
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Is A* Optimal?

* What went wrong?
* Actual bad goal cost < estimated good goal cost
* We need estimates to be less than actual costs!
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ldea: Admissibility

Heuristi - Tron @

Inadmissible (pessimistic) heuristics break Admissible (optimistic) heuristics slow down
optimality by trapping good plans on the fringe bad plans but never outweigh true costs
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Admissible Heuristics

* A heuristic /1 is admissible (optimistic) if:

0 < h(n) < h*(n)

where h™(n)is the true cost to a nearest goal

* Examples:

A

* Coming up with admissible heuristics is most of what’s involved in using A*
In practice.
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Optimality of A* Tree Search

Assume:
* Ais an optimal goal node
* Bis a suboptimal goal node

* hisadmissible

Claim:

* A will exit the fringe before B
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Optimality of A* Tree Search: Blocking

Proof:
* Imagine B is on the fringe

« Some ancestor n of A is on the
fringe, too (maybe Al)
* Claim: n will be expanded before B
1. f(n) is less or equal to f(A)

f(n) =g(n) 4+ h(n) Definition of f-cost
f(n) <g(A) Admissibility of h
g(A) = f(A) h =0 at a goal
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Optimality of A* Tree Search: Blocking

Proof:
* Imagine B is on the fringe

e Some ancestor n of A is on the n
fringe, too (maybe Al)

e Claim: n will be expanded before B ¢
1. f(n)is less or equal to f(A) Q

2. f(A)is less than f(B)

g(A) < g(B) B is suboptimal
f(A) < f(B) h =0 at agoal
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Optimality of A* Tree Search: Blocking

Proof:
* Imagine B is on the fringe

 Some ancestor n of Ais on the
fringe, too (maybe Al)
e Claim: n will be expanded before B
1. f(n) is less or equal to f(A)
2. f(A) is less than f(B)
3. nexpands before B

* All ancestors of A expand before B
* A expands before B

f(n) < f(A) < f(B)

* A* search is optimal
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Properties of A*

Uniform-Cost A*
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Uniform-Cost versus A* Contours

* Uniform-cost expands equally in all

“directions”
Sta@ Goal

* A* expands mainly toward the goal, but
does hedge its bets to ensure optimality

Start -3 Goal
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Pacman Comparison

SCORE: 0

SCORE: 0 SCORE:

Greedy Uniform Cost A*
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A* Applications

* Video games

 Pathing / routing problems

e Resource planning problems
* Robot motion planning

* Language analysis

* Machine translation

* Speech recognition
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A*: Creating Admissible Heuristics

* Most of the work in solving hard search problems optimally is in coming up
with admissible heuristics

* Often, admissible heuristics are solutions to relaxed problems, where new
actions are available

* Inadmissible heuristics are often useful too
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Example: 8 Puzzle

7 2 % 1
&

3|7
5 N N2/4[5

8 3 1 s8N 6

Start State Actions

What are the states? T
How many states?

What are the actions?

How many successors from the start state?
What should the costs be?
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,h' e Figure from Berkley Al; Statistics from Andrew Moore
[T UNIVERSITY.

8 Puzzle: Heuristic |

e Heuristic: Number of tiles misplaced
* Why is it admissible?
* h(start) = 8

* This is a relaxed-problem heuristic

2
>
&

Start State Goal State

Average nodes expanded
when the optimal path has...

...4 steps | ...8 steps | ...12 steps
UCS 112 6,300 3.6 x 10°
TILES 13 39 227

34



8 Puzzle: Heuristic Il

What if we had an easier 8-puzzle where
any tile could slide any direction at any
time, ignoring other tiles?

2
345
& S

Start State Goal State

Total Manhattan distance

 Why is it admissible?
Average nodes expanded

when the optimal path has...

* histart)= 3+ 1+2+ =18 ..4 steps | ...8 steps |...12 steps
TILES 13 39 227
MANHATTAN 12 25 /3
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8 Puzzle: Heuristic Il

* How about using the actual cost as a heuristic?
 Would it be admissible?

* Would we save on nodes expanded?
* What’s wrong with it? '; m
() NOPE. LT |

e With A*: a trade-off between quality of estimate and work per node

* As heuristics get closer to the true cost, you will expand fewer nodes but usually
do more work per node to compute the heuristic itself
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Trivial Heuristics and Dominance

* Dominance: h, > h_if

exact
Vn : hqg(n) > he(n) |
mazx(ha, hy)

* Heuristics form a semi-lattice:

e Max of admissible heuristics is admissible /\

ha, hb
h(n) = maz(ha(n), hy(n)) |
* Trivial heuristics hc
* Bottom of lattice is the zero heuristic (what \
does this give us?)
* Top of lattice is the exact heuristic <ETO0
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Graph Search
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Tree Search: Extra Work!

* Failure to detect repeated states can cause exponentially more work.

/ State Graph \ / Search Tree \

A Y”’""'" o .
B e
o e \
i L f:
k ‘ 'v / K /
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Graph Search

* In BFS, for example, we shouldn’t bother expanding the circled nodes (why?)
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Graph Search Motivation

ldea: never expand a state twice

* How to implement:

* Tree search + set of expanded states (“closed set”)
* Expand the search tree node-by-node, but...

* Before expanding a node, check to make sure its state has never been
expanded before

* If not new, skip it, if new add to closed set

* Important: store the closed set as a set, not a list
* Can graph search wreck completeness? Why/why not?

 How about optimality?
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JMU

A* Graph Search Gone Wrong!

State space graph

JAMES MADISON
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Search tree

S (0+2)
/\

A (1+4) B(1+1)
| |
C (2+1) C (3+1)
! |
G (5+0) G (6+0)
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Consistency of Heuristics

e Main idea: estimated heuristic costs < actual costs

* Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from Ato G
* Consistency: heuristic “arc” cost < actual cost for each arc

h(A) — h(C) < cost(A to C)

* Consequences of consistency:

* The f value along a path never decreases

h(A) < cost(A to C) + h(C)

e A* graph search is optimal
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Optimality of A* Graph Search

e Sketch: consider what A* does with a
consistent heuristic:

* Fact 1: In tree search, A* expands nodes in
increasing total f value (f-contours)

* Fact 2: For every state s, nodes that reach s
optimally are expanded before nodes that
reach s suboptimally

e Result: A* graph search is optimal
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Optimality

Tree search:
* A*is optimal if heuristic is admissible
e UCS is a special case (h =0)

Graph search:
* A* optimal if heuristic is consistent
e UCS optimal (h = 0 is consistent)

* Consistency implies admissibility

* In general, most natural admissible heuristics
tend to be consistent, especially if from relaxed
problems
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A* Summary

* A* uses both backward costs and (estimates of) forward costs
* A* is optimal with admissible / consistent heuristics

* Heuristic design is key: often use relaxed problems
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Tree Search Pseudo-Code

function TREE-SEARCH(problem, fringe) return a solution, or failure

fringe < INSERT(MAKE-NODE(INITIAL-STATE(problem)|), fringe)
loop do

if fringe is empty then return failure

node < REMOVE-FRONT( fringe)

if GOAL-TEST(problem, STATE[node|) then return node

for child-node in EXPAND(STATE|nodel|, problem) do

fringe < INSERT(child-node, fringe)

end

end
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Graph Search Pseudo-Code

function GRAPH-SEARCH(problem, fringe) return a solution, or failure
closed < an empty set
fringe < INSERT(MAKE-NODE(INITIAL-STATE|problem)|), fringe)
loop do
if fringe is empty then return failure
node <— REMOVE-FRONT( fringe)
if GOAL-TEST(problem, STATE[node|) then return node

if STATE[node| is not in closed then
add STATE[node| to closed
for child-node in EXPAND(STATE[node|, problem) do
fringe < INSERT( child-node, fringe)
end

end
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