
Artificial
Intelligence

CS 444 – Spring 2021
Dr. Kevin Molloy

Department of Computer Science
James Madison University Much of this lecture is taken from

Dan Klein and Pieter Abbeel AI class at UC Berkeley

Constraint Satisfaction Problems

Learning Objectives for Today

2
Figure from Berkley AI

• Assumptions about the world: a single agent, deterministic actions, fully observed state,
discrete state space

• Planning: sequences of actions
• The path to the goal is the important thing
• Paths have various costs, depths
• Heuristics give problem-specific guidance

• Identification: assignments to variables
• The goal itself is important, not the path
• All paths at the same depth (for some formulations)
• CSPs are specialized for identification problems

Constraint Satisfaction Problems

3
Figure from Berkley AI

• Standard search problems:
• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything

• Constraint satisfaction problems (CSPs):
• A special subset of search problems
• State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
• Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

• Allows useful general-purpose algorithms with more
power than standard search algorithms

Example CSP: Map Coloring

4
Figure from Berkley AI

Example CSP: Map Coloring Problem Formulation

5
Figure from Berkley AI

• Variables:

• Domains:

• Constraints: adjacent regions must have different
colors

• Solutions are assignments satisfying all constraints,
e.g.:

Implicit:

Explicit:

Example CSP: Map Coloring Search Problem

6
Figure from Berkley AI

States:

Successor function:

Start state:

Goal State

• Partial assignment (or full assignment) of
variables.

• Make an assignment to an unassigned variable.

• All variables unassigned (no countries colored).

• All variables assigned and no constraints violated

Example CSP: N-Queens

7
Figure from Berkley AI

• Formulation 1:
• Variables:
• Domains:
• Constraints

Example CSP: N-Queens

8
Figure from Berkley AI

• Formulation 2:
• Variables:

• Domains:

• Constraints:

Implicit:

Explicit:

Constraint Graphs

9
Figure from Berkley AI

Constraint Graphs

10
Figure from Berkley AI

• Binary CSP: each constraint relates (at most) two
variables

• Binary constraint graph: nodes are variables, arcs
show constraints

• General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

Example: Cryptarithmetic

11
Figure from Berkley AI

• Variables:

• Domains:

• Constraints:

Example: Sudoku

12
Figure from Berkley AI

§ Variables:
§ Each (open) square

§ Domains:
§ {1,2,…,9}

§ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

Varieties of CSPs

13
Figure from Berkley AI

• Discrete Variables
• Finite domains

• Size dmeans O(dn) complete assignments
• E.g., Boolean CSPs, including Boolean satisfiability (NP-

complete)
• Infinite domains (integers, strings, etc.)

• E.g., job scheduling, variables are start/end times for each job
• Linear constraints solvable, nonlinear undecidable

• Continuous variables
• E.g., start/end times for Hubble Telescope observations
• Linear constraints solvable in polynomial time by LP methods

(see cs170 for a bit of this theory)

Varieties of Constraints

14
Figure from Berkley AI

• Varieties of Constraints
• Unary constraints involve a single variable (equivalent to

reducing domains), e.g.:

• Binary constraints involve pairs of variables, e.g.:

• Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

• Preferences (soft constraints):
• E.g., red is better than green
• Often representable by a cost for each variable assignment
• Gives constrained optimization problems
• (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

15
Figure from Berkley AI

• Assignment problems: e.g., who teaches what class
• Timetabling problems: e.g., which class is offered when and where?
• Hardware configuration
• Transportation scheduling
• Factory scheduling
• Circuit layout
• Fault diagnosis
• … lots more!

• Many real-world problems involve real-valued variables…

Solving a CSP: Standard Search Formulation

16
Figure from Berkley AI

• Standard search formulation of CSPs

• States defined by the values assigned
so far (partial assignments)
• Initial state: the empty assignment, {}
• Successor function: assign a value to an

unassigned variable
• Goal test: the current assignment is

complete and satisfies all constraints

• We’ll start with the straightforward,
naïve approach, then improve it

Search Methods

17
Figure from Berkley AI

• What would BFS do?

• What would DFS do?

• What problems does naïve search have?

• https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Backtracking Search

18
Figure from Berkley AI

• Backtracking search is the basic uninformed algorithm for solving CSPs

• Idea 1: One variable at a time
• Variable assignments are commutative, so fix ordering
• I.e., [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assignments to a single variable at each step

• Idea 2: Check constraints as you go
• I.e. consider only values which do not conflict previous assignments
• Might have to do some computation to check the constraints
• “Incremental goal test”

• Depth-first search with these two improvements
is called backtracking search (not the best name)

• Can solve n-queens for n » 25

Backtracking Example

19
Figure from Berkley AI

Backtracking Search

20
Figure from Berkley AI

• Backtracking = DFS + variable-ordering + fail-on-violation
• What are the choice points?

Improving Backtracking

21
Figure from Berkley AI

• General-purpose ideas give huge gains in speed

• Ordering:
• Which variable should be assigned next?
• In what order should its values be tried?

• Filtering: Can we detect inevitable failure early?

• Structure: Can we exploit the problem structure?

Filtering: Forward Checking

22
Figure from Berkley AI

• Filtering: Keep track of domains for unassigned variables and cross off bad options
• Forward checking: Cross off values that violate a constraint when added to the existing

assignment

WA
SA
NT Q

NSW
V

[Demo: coloring -- forward checking]

Filtering: Constraint Propagation

23
Figure from Berkley AI

• Forward checking propagates information from assigned to unassigned variables, but doesn't
provide early detection for all failures:

• NT and SA cannot both be blue!
• Why didn’t we detect this yet?
• Constraint propagation: reason from constraint to constraint

WA SA

NT Q

NSW

V

Consistency of a Single Arc

24
Figure from Berkley AI

• An arc X ® Y is consistent iff for every x in the tail there is some y in the head which could be
assigned without violating a constraint

• Forward checking: Enforcing consistency of arcs pointing to each new assignment
Delete from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP

25
Figure from Berkley AI

• A simple form of propagation makes sure all arcs are consistent:

• Important: If X loses a value, neighbors of X need to be rechecked!
• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment
• What’s the downside of enforcing arc consistency?

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

26
Figure from Berkley AI

• Runtime: O(n2d3), can be reduced to O(n2d2)
• … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

Limitations of Arc Consistency

27
Figure from Berkley AI

• After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not

know it)

• Arc consistency still runs inside a
backtracking search!

What went
wrong here?

[Demo: coloring -- arc consistency]
[Demo: coloring -- forward checking]

Ordering: Minimum Remaining Values

28
Figure from Berkley AI

• Variable Ordering: Minimum remaining values (MRV):
• Choose the variable with the fewest legal left values in its domain

• Why min rather than max?
• Also called “most constrained variable”
• “Fail-fast” ordering

Ordering: Least Constraining Value

29
Figure from Berkley AI

• Value Ordering: Least Constraining Value
• Given a choice of variable, choose the least

constraining value
• I.e., the one that rules out the fewest values in

the remaining variables
• Note that it may take some computation to

determine this! (E.g., rerunning filtering)

• Why least rather than most?

• Combining these ordering ideas makes
1000 queens feasible

Constraint Graphs

30
Figure from Berkley AI

