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Learning Objectives for Today
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• Assumptions about the world: a single agent, deterministic actions, fully observed state, 
discrete state space

• Planning: sequences of actions
• The path to the goal is the important thing
• Paths have various costs, depths
• Heuristics give problem-specific guidance

• Identification: assignments to variables
• The goal itself is important, not the path
• All paths at the same depth (for some formulations)
• CSPs are specialized for identification problems



Constraint Satisfaction Problems
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• Standard search problems:
• State is a “black box”: arbitrary data structure
• Goal test can be any function over states
• Successor function can also be anything

• Constraint satisfaction problems (CSPs):
• A special subset of search problems
• State is defined by variables Xi with values from a 

domain D (sometimes D depends on i)
• Goal test is a set of constraints specifying allowable 

combinations of values for subsets of variables

• Allows useful general-purpose algorithms with more 
power than standard search algorithms



Example CSP: Map Coloring
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Example CSP: Map Coloring Problem Formulation
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• Variables:

• Domains:

• Constraints: adjacent regions must have different 
colors

• Solutions are assignments satisfying all constraints, 
e.g.:

Implicit:

Explicit:



Example CSP: Map Coloring Search Problem
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States:

Successor function:

Start state:

Goal State

• Partial assignment (or full assignment) of 
variables.

• Make an assignment to an unassigned variable.

• All variables unassigned (no countries colored).

• All variables assigned  and no constraints violated



Example CSP: N-Queens
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• Formulation 1:
• Variables:
• Domains:
• Constraints



Example CSP: N-Queens
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• Formulation 2:
• Variables:

• Domains:

• Constraints:

Implicit:

Explicit:



Constraint Graphs
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Constraint Graphs
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• Binary CSP: each constraint relates (at most) two 
variables

• Binary constraint graph: nodes are variables, arcs 
show constraints

• General-purpose CSP algorithms use the graph 
structure to speed up search. E.g., Tasmania is an 
independent subproblem!



Example: Cryptarithmetic
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• Variables:

• Domains:

• Constraints:



Example: Sudoku
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§ Variables:
§ Each (open) square

§ Domains:
§ {1,2,…,9}

§ Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region

(or can have a bunch of 
pairwise inequality 
constraints)



Varieties of CSPs
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• Discrete Variables
• Finite domains

• Size dmeans O(dn) complete assignments
• E.g., Boolean CSPs, including Boolean satisfiability (NP-

complete)
• Infinite domains (integers, strings, etc.)

• E.g., job scheduling, variables are start/end times for each job
• Linear constraints solvable, nonlinear undecidable

• Continuous variables
• E.g., start/end times for Hubble Telescope observations
• Linear constraints solvable in polynomial time by LP methods 

(see cs170 for a bit of this theory)



Varieties of Constraints
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• Varieties of Constraints
• Unary constraints involve a single variable (equivalent to 

reducing domains), e.g.:

• Binary constraints involve pairs of variables, e.g.:

• Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

• Preferences (soft constraints):
• E.g., red is better than green
• Often representable by a cost for each variable assignment
• Gives constrained optimization problems
• (We’ll ignore these until we get to Bayes’ nets)



Real-World CSPs
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• Assignment problems: e.g., who teaches what class
• Timetabling problems: e.g., which class is offered when and where?
• Hardware configuration
• Transportation scheduling
• Factory scheduling
• Circuit layout
• Fault diagnosis
• … lots more!

• Many real-world problems involve real-valued variables…



Solving a CSP: Standard Search Formulation
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• Standard search formulation of CSPs

• States defined by the values assigned 
so far (partial assignments)
• Initial state: the empty assignment, {}
• Successor function: assign a value to an 

unassigned variable
• Goal test: the current assignment is 

complete and satisfies all constraints

• We’ll start with the straightforward, 
naïve approach, then improve it



Search Methods
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• What would BFS do?

• What would DFS do?

• What problems does naïve search have?

• https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html


Backtracking Search
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• Backtracking search is the basic uninformed algorithm for solving CSPs

• Idea 1: One variable at a time
• Variable assignments are commutative, so fix ordering
• I.e., [WA = red then NT = green] same as [NT = green then WA = red]
• Only need to consider assignments to a single variable at each step

• Idea 2: Check constraints as you go
• I.e. consider only values which do not conflict previous assignments
• Might have to do some computation to check the constraints
• “Incremental goal test”

• Depth-first search with these two improvements
is called backtracking search (not the best name)

• Can solve n-queens for n » 25



Backtracking Example
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Backtracking Search
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• Backtracking = DFS + variable-ordering + fail-on-violation
• What are the choice points?



Improving Backtracking
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• General-purpose ideas give huge gains in speed

• Ordering:
• Which variable should be assigned next?
• In what order should its values be tried?

• Filtering: Can we detect inevitable failure early?

• Structure: Can we exploit the problem structure?



Filtering: Forward Checking
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• Filtering: Keep track of domains for unassigned variables and cross off bad options
• Forward checking: Cross off values that violate a constraint when added to the existing 

assignment

WA
SA
NT Q

NSW
V

[Demo: coloring -- forward checking]



Filtering: Constraint Propagation
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• Forward checking propagates information from assigned to unassigned variables, but doesn't 
provide early detection for all failures:

• NT and SA cannot both be blue!
• Why didn’t we detect this yet?
• Constraint propagation: reason from constraint to constraint

WA SA

NT Q

NSW

V



Consistency of a Single Arc
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• An arc X ® Y is consistent iff for every x in the tail there is some y in the head which could be 
assigned without violating a constraint

• Forward checking: Enforcing consistency of arcs pointing to each new assignment
Delete from the tail!

WA SA

NT Q

NSW

V



Arc Consistency of an Entire CSP
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• A simple form of propagation makes sure all arcs are consistent:

• Important: If X loses a value, neighbors of X need to be rechecked!
• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment 
• What’s the downside of enforcing arc consistency?

Remember: Delete 
from  the tail!

WA SA

NT Q

NSW

V



Enforcing Arc Consistency in a CSP
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• Runtime: O(n2d3), can be reduced to O(n2d2)
• … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]



Limitations of Arc Consistency
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• After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not 

know it)

• Arc consistency still runs inside a 
backtracking search!

What went 
wrong here?

[Demo: coloring -- arc consistency]
[Demo: coloring -- forward checking]



Ordering: Minimum Remaining Values
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• Variable Ordering: Minimum remaining values (MRV):
• Choose the variable with the fewest legal left values in its domain

• Why min rather than max?
• Also called “most constrained variable”
• “Fail-fast” ordering



Ordering: Least Constraining Value
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• Value Ordering: Least Constraining Value
• Given a choice of variable, choose the least 

constraining value
• I.e., the one that rules out the fewest values in 

the remaining variables
• Note that it may take some computation to 

determine this!  (E.g., rerunning filtering)

• Why least rather than most?

• Combining these ordering ideas makes
1000 queens feasible



Constraint Graphs
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