Artificial
Intelligence

Constraint Satistfaction Problems
CS 444 - Spring 2021
Dr. Kevin Molloy

Department of Computer Science

Much of this lecture is taken from
JAMES MADISON : ; :
@ UNIVERSITY, James Mad|son UnIVGFSIty Dan Klein and Pieter Abbeel Al class at UC Berkeley

Learning Objectives for Today

* Assumptions about the world: a single agent, deterministic actions, fully observed state,
discrete state space

* Planning: sequences of actions

* The path to the goal is the important thing
* Paths have various costs, depths
* Heuristics give problem-specific guidance

* |dentification: assignments to variables
* The goal itself is important, not the path

* All paths at the same depth (for some formulations)
* CSPs are specialized for identification problems

@ Jﬁxﬁi I:I;\gl??N Figure from Berkley Al

Constraint Satisfaction Problems

e Standard search problems:
e Stateis a “black box”: arbitrary data structure
* Goal test can be any function over states
e Successor function can also be anything

* Constraint satisfaction problems (CSPs):
* A special subset of search problems

* State is defined by variables X; with values from a
domain D (sometimes D depends on i)

e Goal test is a set of constraints specifying allowable
combinations of values for subsets of variables

* Allows useful general-purpose algorithms with more
power than standard search algorithms

@ JI-}II!I“EI% IEVI;\S!)J??N Figure from Berkley Al

Example CSP: Map Coloring

4
@ J‘trh?qEI% IEVII:\SDllng Figure from Berkley Al

Example CSP: Map Coloring Problem Formulation

* Variables: WA, NT, Q, NSW, V, SA, T

 Domains: D = {red, green, blue}

Constraints: adjacent regions must have different
colors

Implicit: WA = NT

Explicit: (WA,NT) € {(red,green), (red, blue), ...}

Solutions are assignments satisfying all constraints,
e.g.:

{WA=red, NT=green, Q=red, NSW=green,
V=red, SA=Dblue, T=green}

@ JI-}II!I“EI% IEVI;\SPIIIS'?N Figure from Berkley Al

Example CSP: Map Coloring Search Problem

States:

 Partial assignment (or full assignment) of
variables.

Successor function:

* Make an assignment to an unassigned variable.

Start state:

 All variables unassigned (no countries colored).

Goal State
 All variables assigned and no constraints violated

@ JI-}II!I“EI% IEVI;\S!)J??N Figure from Berkley Al

Example CSP: N-Queens

* Formulation 1:
* Variables: X
* Domains: {0, 1}
* Constraints

Vi, j, k (X5, X)) € {(0,0),(0,1),(1,0)}

Vi.j,k (X, Xp;) € {(0,0),(0,1),(1,0)} X =
Vi, j, k (X5, Xigrj+k) € 1(0,0),(0,1),(1,0)} 1,

Vi, g,k (X5, Xitrj—k) € 1(0,0),(0,1),(1,0)}

AMES MADI /
@ ! UN Is\;/ ERSI ?9" Figure from Berkley Al

Example CSP: N-Queens

e Formulation 2:

* Variables: Q. @1

Q2
e Domains: {1,2,3,...N} Q3

Q4

* Constraints:

Implicit: Vi,j non-threatening(Q;, Q;)

it (Q1,Q2) € {(1,3),(1,4),...}

8
@ JQM«EI% IEVI;\SDI??N Figure from Berkley Al

Constraint Graphs

JAMES MADISON) 9
UNIVERSITY. Figure from Berkley Al

Constraint Graphs

e Binary CSP: each constraint relates (at most) two @

variables e
o %

* Binary constraint graph: nodes are variables, arcs
show constraints

* General-purpose CSP algorithms use the graph @
structure to speed up search. E.g., Tasmania is an
independent subproblem!

10
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Example: Cryptarithmetic

e Variables: T WO
FTUWRO X1 Xo X3 + T WO
e Domains: F O UR

{0,1,2,3,4,5,6,7,8,9}
 Constraints:

alldiff(F, T, U, W, R, O) (P/u w) (R) YO

O—|—O:R—|-1O-X1

11
@ JI-}IIVBIIEI% I:I;\gl??N Figure from Berkley Al

Example: Sudoku

= Variables:

= Each (open) square
= Domains:

= {1,2,..,9}
= Constraints:

9-way alldiff for each column

9-way alldiff for each row

9-way alldiff for each region

(or can have a bunch of
pairwise inequality
constraints)

JAMES MADISON) 12
UNIVERSITY. Figure from Berkley Al

Varieties of CSPs

* Discrete Variables
* Finite domains
* Size d means O(d") complete assignments

* E.g., Boolean CSPs, including Boolean satisfiability (NP-
complete)

 Infinite domains (integers, strings, etc.)
* E.g., job scheduling, variables are start/end times for each job
* Linear constraints solvable, nonlinear undecidable

* Continuous variables
* E.g., start/end times for Hubble Telescope observations

* Linear constraints solvable in polynomial time by LP methods
(see cs170 for a bit of this theory)

13
@ JI-}II!I“EI% IEVI;\SPIIIS'?N Figure from Berkley Al

Varieties of Constraints

e Varieties of Constraints

* Unary constraints involve a single variable (equivalent to
reducing domains), e.g.:

SA £ green

* Binary constraints involve pairs of variables, e.g.:

SA £ WA

* Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

* Preferences (soft constraints):
* E.g., redis better than green
» Often representable by a cost for each variable assignment
e Gives constrained optimization problems
* (We'll ignore these until we get to Bayes’ nets)

14
@ JI-}II\{I\]EIS‘B’ 2‘14\3'??" Figure from Berkley Al

Real-World CSPs

Assignment problems: e.g., who teaches what class

Timetabling problems: e.g., which class is offered when and where?

Hardware configuration

Transportation scheduling

Factory scheduling

Circuit layout

Fault diagnosis

... lots more!

Many real-world problems involve real-valued variables...

15
@ JI-}II\{I\]EIS‘B’ 2‘14\3'??" Figure from Berkley Al

Solving a CSP: Standard Search Formulation

e Standard search formulation of CSPs

* States defined by the values assigned
so far (partial assignments)
* |nitial state: the empty assignment, {}

 Successor function: assign a value to an
unassigned variable

* Goal test: the current assignment is
complete and satisfies all constraints

* We'll start with the straightforward,
naive approach, then improve it

JAMES MADISON) 16
UNIVERSITY. Figure from Berkley Al

Search Methods

e What would BFS do?

e What would DFS do?

* What problems does naive search have?

e https://inst.eecs.berkeley.edu/~cs188/fal9/assets/demos/csp/csp demos.html @

JAMES MADISON) 17
UNIVERSITY. Figure from Berkley Al

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Backtracking Search

* Backtracking search is the basic uninformed algorithm for solving CSPs

* |dea 1: One variable at a time
* Variable assignments are commutative, so fix ordering
* |.e., [WA =red then NT = green] same as [NT = green then WA = red]
* Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
 |.e. consider only values which do not conflict previous assignments
* Might have to do some computation to check the constraints
* “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search (not the best name)

¥

18
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

* Can solve n-queens for n ~ 25

Backtracking Example

A

- & ¢

Backtracking Search

function BACKTRACKING-SEARCH(csp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var«— SELECT-UNASSIGNED- VARIABLE(VARIABLES[csp|, assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp| then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING(assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

* Backtracking = DFS + variable-ordering + fail-on-violation
* What are the choice points?

@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Improving Backtracking

* General-purpose ideas give huge gains in speed

* Ordering:
* Which variable should be assigned next?
* In what order should its values be tried?

* Filtering: Can we detect inevitable failure early?

e Structure: Can we exploit the problem structure?

JAMES MADISON) 21
UNIVERSITY. Figure from Berkley Al

Filtering: Forward Checking

* Filtering: Keep track of domains for unassigned variables and cross off bad options

* Forward checking: Cross off values that violate a constraint when added to the existing

assignment
WA NT| Q
SA NSW.
Vv

WA NT Q NSW Vv SA

. . 22
@ JAMES MADISON [Demo: coloring -- forward checking] Figure from Berkley Al

Filtering: Constraint Propagation

* Forward checking propagates information from assigned to unassigned variables, but doesn't
provide early detection for all failures:

‘ NT Jig
SA |——~
NSW

WA NT Q NSW \'

 NT and SA cannot both be blue!
 Why didn’t we detect this yet?
e Constraint propagation: reason from constraint to constraint

@ JAMES MADISON
UNIVERSITY.

Figure from Berkley Al

Consistency of a Single Arc

* Anarc X — Y is consistent iff for every x in the tail there is somey in the head which could be
assigned without violating a constraint

4

NT WA NT Q NSW v SA
Q

3 C___ I IFTE T I 1

NSW
\Y

Delete from the tail!

* Forward checking: Enforcing consistency of arcs pointing to each new assignment

24
@ JI}II!I“EIS"»’ IEVII:-\SDllggN Figure from Berkley Al

Arc Consistency of an Entire CSP

* A simple form of propagation makes sure all arcs are consistent:

| NT fig WA NT Q NSW vV SA
‘SA o I | 1 [H E[ErN] 1

v 1\ VVV

Important: If X loses a value, neighbors of X need to be rechecked!
Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment Remember: Delete
What’s the downside of enforcing arc consistency? from the tail!

25
@ Jﬁxﬁi I:I;\gl??N Figure from Berkley Al

Enforcing Arc Consistency in a CSP

function AC-3(csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X, Xy, ..., X, }
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X,) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;, X;) then
for each X} in NEIGHBORS[.X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES(X, X;) returns true iff succeeds
removed «— false
for each z in DOMAIN[X}] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; < X
then delete = from DOMAIN[X]; removed — true
return removed

* Runtime: O(n%d3), can be reduced to O(n?d?)

* ... but detecting all possible future problems is NP-hard — why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]

@ JI-}II\{I\]EI% IEVI;\S!)J??N Figure from Berkley Al

Limitations of Arc Consistency

* After enforcing arc consistency:
e Can have one solution left
e Can have multiple solutions left
e Can have no solutions left (and not

know it)

* Arc consistency still runs inside a

backtracking search!

@ JAMES MADISON
UNIVERSITY.

(—

What went
wrong here?

[Demo: coloring -- forward checking]

[Demo: coloring -- arc consistency]
Figure from Berkley Al

Ordering: Minimum Remaining Values

* Variable Ordering: Minimum remaining values (MRV):
* Choose the variable with the fewest legal left values in its domain

~D

* Why min rather than max?

* Also called “most constrained variable”

* “Fail-fast” ordering

@ JAMES MADISON
UNIVERSITY.

Ordering: Least Constraining Value

* Value Ordering: Least Constraining Value

e Given a choice of variable, choose the least “—%
constraining value
* |.e., the one that rules out the fewest values in ‘\—Lt_<
the remaining variables ‘
* Note that it may take some computation to “_Lt:

determine this! (E.g., rerunning filtering)

* Why least rather than most?

* Combining these ordering ideas makes
1000 queens feasible

29
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Constraint Graphs

JAMES MADISON) 30
UNIVERSITY. Figure from Berkley Al

