
Artificial
Intelligence

CS 444 – Spring 2021
Dr. Kevin Molloy

Department of Computer Science
James Madison University Much of this lecture is taken from

Dan Klein and Pieter Abbeel AI class at UC Berkeley

Constraint Satisfaction Problems (Part 2)

Today

2
Figure from Berkley AI

• Review of A* Heuristics for PA 1

• Continue with Constraint Satisfaction problems

• Arc consistency AC-3 examples

• Problem Structure

• Min conflicts

Learning Objectives

3
Figure from Berkley AI

• Apply the AC-3 to maintain arc consistency (MAC)

• Investigate the problem structure of CSPs for identify more efficient solutions using
cutset conditioning and tree decomposition

• Apply min-conflicts algorithm and by able to code it to solve CSPs. Characterize the
min-conflicts algorithm (runtime, completeness, etc).

Student Heuristic Presentation

4
Figure from Berkley AI

• Alex Marasco – Finding/visit all the corners heuristics

• Garrett Christian -- Eat all the dots heuristic

CSP problems

5
Figure from Berkley AI

• CSPs:
• Variables
• Domains
• Constraints

• Implicit (provide code to compute)
• Explicit (provide a list of the legal tuples)
• Types:

• Unary (one variable)
• Binary (two variables)
• N-ary (n variables)

• Goals:
• In this class: find any solution
• Also: find all, find best, etc.

Backtracking Search

6
Figure from Berkley AI

Backtracking Example

7
Figure from Berkley AI

Improving Backtracking

8
Figure from Berkley AI

• General-purpose ideas give huge gains in speed
• … but it’s all still NP-hard

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next? (MRV)
• In what order should its values be tried? (LCV)

• Structure: Can we exploit the problem structure?

Consistency of a Single Arc

9
Figure from Berkley AI

• An arc X ® Y is consistent iff for every x in the tail there is some y in the head which could be
assigned without violating a constraint

• Forward checking: Enforcing consistency of arcs pointing to each new assignment
Delete from the tail!

WA SA

NT Q

NSW

V

Arc Consistency of an Entire CSP

10
Figure from Berkley AI

• A simple form of propagation makes sure all arcs are consistent:

• Important: If X loses a value, neighbors of X need to be rechecked!
• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment
• What’s the downside of enforcing arc consistency?

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

Enforcing Arc Consistency in a CSP

11
Figure from Berkley AI

• Runtime: O(n2d3), can be reduced to O(n2d2)
• … but detecting all possible future problems is NP-hard – why?

Limitations of Arc Consistency

12
Figure from Berkley AI

• After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not

know it)

• Arc consistency still runs inside a
backtracking search!

What went
wrong here?

K-Consistency

13
Figure from Berkley AI

• Increasing degrees of consistency

• 1-Consistency (Node Consistency): Each single node’s domain has a
value which meets that node’s unary constraints

• 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

• K-Consistency: For each k nodes, any consistent assignment to k-1 can
be extended to the kth node.

• Higher k more expensive to compute

• (You need to know the k=2 case: arc consistency)

Strong K-Consistency

14
Figure from Berkley AI

• Strong k-consistency: also k-1, k-2, … 1 consistent

• Claim: strong n-consistency means we can solve without backtracking!

• Why?
• Choose any assignment to any variable
• Choose a new variable
• By 2-consistency, there is a choice consistent with the first
• Choose a new variable
• By 3-consistency, there is a choice consistent with the first 2
• …

• Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path
consistency)

Intelligent Backtracking

15
Figure from Berkley AI

WA
NT

SA

Q

Variable assignment order: {Q, NSW, V, T, SA, WA, NT}

Partial Assignment: {Q = red, NSW=green, V=blue,
T=red}

NSW

V

T

What does normal backtracking do when it tries to
assignment SA a color?

Intelligent Backtracking

16
Figure from Berkley AI

WA
NT

SA

Q

Variable assignment order: {Q, NSW, V, T, SA, WA, NT}

Partial Assignment: {Q = red, NSW=green, V=blue,
T=red}

NSW

V

T

What does normal backtracking do when it tries to
assignment SA a color?
• It tries all 3 colors. None of these work. So backtrack
• Change the color of T and try SA again
• Still no assignment works for SA. So backtrack.
• Etc.

How can we make this better?

Intelligent Backtracking – Back jumping

17
Figure from Berkley AI

WA
NT

SA

Q

Variable assignment order: {Q, NSW, V, T, SA, WA, NT}

Partial Assignment: {Q = red, NSW=green, V=blue,
T=red}

NSW

V

T

Idea: Jump to a variable that is causing a problem.

Define a conflict set, which is built as we evaluate a
variable. So, for SA, we check:
• Can't use red, Q is added to the conflict set for SA.
• Can't use green, NSW is added to the conflict set for

SA.
• Can't use blue, V is added to the conflict set for SA.

Backtrack to at least one of these variables so we
have a chance of correcting the issue.

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Tree-Structured CSPs

18
Figure from Berkley AI

• Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
• Compare to general CSPs, where worst-case time is O(dn)

• This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

Tree-Structured CSPs

19
Figure from Berkley AI

• Algorithm for tree-structured CSPs:
• Order: Choose a root variable, order variables so that parents precede children

• Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
• Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

• Runtime: O(n d2) (why?)

Tree-Structured CSPs

20
Figure from Berkley AI

• Claim 1: After backward pass, all root-to-leaf arcs are consistent
• Proof: Each X®Y was made consistent at one point and Y’s domain could not have been reduced

thereafter (because Y’s children were processed before Y)

• Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
• Proof: Induction on position

• Why doesn’t this algorithm work with cycles in the constraint graph?

• Note: we’ll see this basic idea again with Bayes’ nets

Nearly Tree-Structured CSPs

21
Figure from Berkley AI

• Conditioning: instantiate a variable, prune its neighbors' domains

• Cutset conditioning: instantiate (in all ways) a set of variables such that the
remaining constraint graph is a tree

• Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c

Cutset Conditioning

22
Figure from Berkley AI

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

Cutset Quiz

23
Figure from Berkley AI

• Find the smallest cutset for the graph below.

Tree Decomposition

24
Figure from Berkley AI

§ Idea: create a tree-structured graph of mega-variables
§ Each mega-variable encodes part of the original CSP
§ Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),
(WA=b,SA=r,NT=g),
…}

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),
…}

Agree: (M1,M2) Î
{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)), …}

Agree on shared vars

NT

SA

¹
WA

¹ ¹

Q

SA

¹
NT

¹ ¹

Agree on shared vars

NS
W

SA

¹
Q

¹ ¹

Agree on shared vars

V

SA

¹
NS
W

¹ ¹

Iterative Algorithms for CSPs

25
Figure from Berkley AI

• Local search methods typically work with “complete” states, i.e., all variables assigned

• To apply to CSPs:
• Take an assignment with unsatisfied constraints
• Operators reassign variable values
• No fringe! Live on the edge.

• Algorithm:
While not solved:

Variable selection: randomly select any conflicted variable

Value selection: min-conflicts heuristic:
Choose a value that violates the fewest constraints
I.e., hill climb with h(n) = total number of violated constraints

Performance of Different CSP Algorithms

26
Figure from Berkley AI

Problem Backtracking BT+MRV Forward
Checking

FC+MRV Min-
Conflicts

USA (4 color) (> 1,000,000)
n-Queens (> 40,000,000)

Performance of Different CSP Algorithms

27
Figure from Berkley AI

Problem Backtracking BT+MRV Forward
Checking

FC+MRV Min-
Conflicts

USA (4 color) (> 1,000,000) (> 1,000,000)
n-Queens (> 40,000,000) 13,500,000

Performance of Different CSP Algorithms

28
Figure from Berkley AI

Problem Backtracking BT+MRV Forward Checking FC+MRV Min-
Conflicts

USA (4 color) (> 1,000,000) (> 1,000,000) 2,000
n-Queens (> 40,000,000) 13,500,000 (> 40,000,000)

Performance of Different CSP Algorithms

29
Figure from Berkley AI

Problem Backtracking BT+MRV Forward Checking FC+MRV Min-
Conflicts

USA (4 color) (> 1,000,000) (> 1,000,000) 2,000 60
n-Queens (> 40,000,000) 13,500,000 (> 40,000,000) 817,000

Performance of Different CSP Algorithms

30
Figure from Berkley AI

Problem Backtracking BT+MRV Forward Checking FC+MRV Min-
Conflicts

USA (4 color) (> 1,000,000) (> 1,000,000) 2,000 60 64
n-Queens (> 40,000,000) 13,500,000 (> 40,000,000) 817,000 4,000

Don't Make Things too Complicated

31
Figure from Berkley AI

• Given random initial state, can solve n-queens in almost constant time for arbitrary n
with high probability (e.g., n = 10,000,000)!

• The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

CSP Summary

32
Figure from Berkley AI

• CSPs are a special kind of search problem:
• States are partial assignments
• Goal test defined by constraints

• Basic solution: backtracking search

• Speed-ups:
• Ordering
• Filtering
• Structure

• Iterative min-conflicts is often effective in practice

