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Today
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• Review of A* Heuristics for PA 1

• Continue with Constraint Satisfaction problems

• Arc consistency AC-3 examples 

• Problem Structure

• Min conflicts



Learning Objectives
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• Apply the AC-3 to maintain arc consistency (MAC)

• Investigate the problem structure of CSPs for identify more efficient solutions using 
cutset conditioning and tree decomposition

• Apply min-conflicts algorithm and by able to code it to solve CSPs.  Characterize the 
min-conflicts algorithm (runtime, completeness, etc).



Student Heuristic Presentation
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• Alex Marasco – Finding/visit all the corners heuristics

• Garrett Christian  -- Eat all the dots heuristic



CSP problems
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• CSPs:
• Variables
• Domains
• Constraints

• Implicit (provide code to compute)
• Explicit (provide a list of the legal tuples)
• Types:

• Unary (one variable)
• Binary (two variables)
• N-ary (n variables)

• Goals:
• In this class: find any solution
• Also: find all, find best, etc.



Backtracking Search

6
Figure from Berkley AI



Backtracking Example
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Improving Backtracking
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• General-purpose ideas give huge gains in speed
• … but it’s all still NP-hard

• Filtering: Can we detect inevitable failure early?

• Ordering:
• Which variable should be assigned next?  (MRV)
• In what order should its values be tried?  (LCV)

• Structure: Can we exploit the problem structure?



Consistency of a Single Arc
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• An arc X ® Y is consistent iff for every x in the tail there is some y in the head which could be 
assigned without violating a constraint

• Forward checking: Enforcing consistency of arcs pointing to each new assignment
Delete from the tail!

WA SA

NT Q

NSW

V



Arc Consistency of an Entire CSP
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• A simple form of propagation makes sure all arcs are consistent:

• Important: If X loses a value, neighbors of X need to be rechecked!
• Arc consistency detects failure earlier than forward checking
• Can be run as a preprocessor or after each assignment 
• What’s the downside of enforcing arc consistency?

Remember: Delete 
from  the tail!

WA SA

NT Q

NSW

V



Enforcing Arc Consistency in a CSP
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• Runtime: O(n2d3), can be reduced to O(n2d2)
• … but detecting all possible future problems is NP-hard – why?



Limitations of Arc Consistency
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• After enforcing arc consistency:
• Can have one solution left
• Can have multiple solutions left
• Can have no solutions left (and not 

know it)

• Arc consistency still runs inside a 
backtracking search!

What went 
wrong here?



K-Consistency
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• Increasing degrees of consistency

• 1-Consistency (Node Consistency): Each single node’s domain has a 
value which meets that node’s unary constraints

• 2-Consistency (Arc Consistency): For each pair of nodes, any 
consistent assignment to one can be extended to the other

• K-Consistency: For each k nodes, any consistent assignment to k-1 can 
be extended to the kth node.

• Higher k more expensive to compute

• (You need to know the k=2 case: arc consistency)



Strong K-Consistency
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• Strong k-consistency: also k-1, k-2, … 1 consistent

• Claim: strong n-consistency means we can solve without backtracking!

• Why?
• Choose any assignment to any variable
• Choose a new variable
• By 2-consistency, there is a choice consistent with the first
• Choose a new variable
• By 3-consistency, there is a choice consistent with the first 2
• …

• Lots of middle ground between arc consistency and n-consistency!  (e.g. k=3, called path 
consistency)



Intelligent Backtracking
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WA
NT

SA

Q

Variable assignment order: {Q, NSW, V, T, SA, WA, NT}

Partial Assignment: {Q = red, NSW=green, V=blue, 
T=red}

NSW

V

T

What does normal backtracking do when it tries to 
assignment SA a color?



Intelligent Backtracking
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WA
NT

SA

Q

Variable assignment order: {Q, NSW, V, T, SA, WA, NT}

Partial Assignment: {Q = red, NSW=green, V=blue, 
T=red}

NSW

V

T

What does normal backtracking do when it tries to 
assignment SA a color?
• It tries all 3 colors.  None of these work. So backtrack
• Change the color of T and try SA again
• Still no assignment works for SA. So backtrack.
• Etc.

How can we make this better?



Intelligent Backtracking – Back jumping
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WA
NT

SA

Q

Variable assignment order: {Q, NSW, V, T, SA, WA, NT}

Partial Assignment: {Q = red, NSW=green, V=blue, 
T=red}

NSW

V

T

Idea: Jump to a variable that is causing a problem.

Define a conflict set, which is built as we evaluate a 
variable.  So, for SA, we check:
• Can't use red, Q is added to the conflict set for SA.
• Can't use green, NSW is added to the conflict set for 

SA.
• Can't use blue, V is added to the conflict set for SA.  

Backtrack to at least one of these variables so we 
have a chance of correcting the issue.

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html


Tree-Structured CSPs
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• Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
• Compare to general CSPs, where worst-case time is O(dn)

• This property also applies to probabilistic reasoning (later): an example of the relation 
between syntactic restrictions and the complexity of reasoning



Tree-Structured CSPs
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• Algorithm for tree-structured CSPs:
• Order: Choose a root variable, order variables so that parents precede children

• Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
• Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

• Runtime: O(n d2)  (why?)



Tree-Structured CSPs
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• Claim 1: After backward pass, all root-to-leaf arcs are consistent
• Proof: Each X®Y was made consistent at one point and Y’s domain could not have been reduced 

thereafter (because Y’s children were processed before Y)

• Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
• Proof: Induction on position

• Why doesn’t this algorithm work with cycles in the constraint graph?

• Note: we’ll see this basic idea again with Bayes’ nets



Nearly Tree-Structured CSPs
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• Conditioning: instantiate a variable, prune its neighbors' domains

• Cutset conditioning: instantiate (in all ways) a set of variables such that the 
remaining constraint graph is a tree

• Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c



Cutset Conditioning
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SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset



Cutset Quiz
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• Find the smallest cutset for the graph below.



Tree Decomposition
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§ Idea: create a tree-structured graph of mega-variables
§ Each mega-variable encodes part of the original CSP
§ Subproblems overlap to ensure consistent solutions

M1 M2 M3 M4

{(WA=r,SA=g,NT=b),      
(WA=b,SA=r,NT=g),
…}

{(NT=r,SA=g,Q=b),
(NT=b,SA=g,Q=r),
…}

Agree: (M1,M2) Î
{((WA=g,SA=g,NT=g), (NT=g,SA=g,Q=g)),  …}

Agree on    shared vars

NT

SA

¹
WA

¹ ¹

Q

SA

¹
NT

¹ ¹

Agree on    shared vars

NS
W

SA

¹
Q

¹ ¹

Agree on    shared vars

V

SA

¹
NS
W

¹ ¹



Iterative Algorithms for CSPs
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• Local search methods typically work with “complete” states, i.e., all variables assigned

• To apply to CSPs:
• Take an assignment with unsatisfied constraints
• Operators reassign variable values
• No fringe!  Live on the edge.

• Algorithm:
While not solved:

Variable selection: randomly select any conflicted variable

Value selection: min-conflicts heuristic:
Choose a value that violates the fewest constraints
I.e., hill climb with h(n) = total number of violated constraints



Performance of Different CSP Algorithms
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Problem Backtracking BT+MRV Forward 
Checking

FC+MRV Min-
Conflicts

USA (4 color) (> 1,000,000)
n-Queens (> 40,000,000)



Performance of Different CSP Algorithms
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Problem Backtracking BT+MRV Forward 
Checking

FC+MRV Min-
Conflicts

USA (4 color) (> 1,000,000) (> 1,000,000)
n-Queens (> 40,000,000) 13,500,000



Performance of Different CSP Algorithms
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Problem Backtracking BT+MRV Forward Checking FC+MRV Min-
Conflicts

USA (4 color) (> 1,000,000) (> 1,000,000) 2,000
n-Queens (> 40,000,000) 13,500,000 (> 40,000,000)



Performance of Different CSP Algorithms
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Problem Backtracking BT+MRV Forward Checking FC+MRV Min-
Conflicts

USA (4 color) (> 1,000,000) (> 1,000,000) 2,000 60
n-Queens (> 40,000,000) 13,500,000 (> 40,000,000) 817,000



Performance of Different CSP Algorithms
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Problem Backtracking BT+MRV Forward Checking FC+MRV Min-
Conflicts

USA (4 color) (> 1,000,000) (> 1,000,000) 2,000 60 64
n-Queens (> 40,000,000) 13,500,000 (> 40,000,000) 817,000 4,000



Don't Make Things too Complicated
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• Given random initial state, can solve n-queens in almost constant time for arbitrary n 
with high probability (e.g., n = 10,000,000)!

• The same appears to be true for any randomly-generated CSP except in a narrow 
range of the ratio



CSP Summary
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• CSPs are a special kind of search problem:
• States are partial assignments
• Goal test defined by constraints

• Basic solution: backtracking search

• Speed-ups:
• Ordering
• Filtering
• Structure

• Iterative min-conflicts is often effective in practice


