Artificial
Intelligence

Constraint Satisfaction Problems (Part 2)
CS 444 - Spring 2021
Dr. Kevin Molloy

Department of Computer Science

Much of this lecture is taken from
JAMES MADISON : ; :
@ UNIVERSITY, James Mad|son UnIVGFSIty Dan Klein and Pieter Abbeel Al class at UC Berkeley



Today

Review of A* Heuristics for PA 1

Continue with Constraint Satisfaction problems

Arc consistency AC-3 examples

Problem Structure

Min conflicts

@ JI-}MIEI% IEVI;\SPI??N Figure from Berkley Al



Learning Objectives

* Apply the AC-3 to maintain arc consistency (MAC)

* Investigate the problem structure of CSPs for identify more efficient solutions using
cutset conditioning and tree decomposition

* Apply min-conflicts algorithm and by able to code it to solve CSPs. Characterize the
min-conflicts algorithm (runtime, completeness, etc).

@ JI-}JIVBIIEI% I:I;\gl??N Figure from Berkley Al



Student Heuristic Presentation

* Alex Marasco — Finding/visit all the corners heuristics

e Garrett Christian -- Eat all the dots heuristic

4
@ JI-}MIEI% IEVI;\SPI??N Figure from Berkley Al



CSP problems

* CSPs:
* Variables @
* Domains
* Constraints
* Implicit (provide code to compute) @ @

* Explicit (provide a list of the legal tuples)
* Types:
* Unary (one variable)

e Binary (two variables)
* N-ary (n variables)

e Goals:

* In this class: find any solution
e Also: find all, find best, etc.

@ JI-}II!I“EI% IEVI;\SPIIIS'?N Figure from Berkley Al



Backtracking Search

function BACKTRACKING-SEARCH(c¢sp) returns solution /failure
return RECURSIVE-BACKTRACKING({ }, ¢sp)

function RECURSIVE-BACKTRACKING(assignment, csp) returns soln /failure
if assignment is complete then return assignment
var<«— SELECT-UNASSIGNED- VARIABLE( VARIABLES|csp], assignment, csp)
for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do
if value is consistent with assignment given CONSTRAINTS[csp] then
add {var = value} to assignment
result «— RECURSIVE-BACKTRACKING( assignment, csp)
if result # failure then return result
remove {var = value} from assignment
return failure

@ JI-}MIEI% IEVI;\SPI??N Figure from Berkley Al



Backtracking Example

A

- & ¢




Improving Backtracking

* General-purpose ideas give huge gains in speed
e ... butit’s all still NP-hard

* Filtering: Can we detect inevitable failure early?

* Ordering:
* Which variable should be assigned next? (MRV)
* In what order should its values be tried? (LCV)

* Structure: Can we exploit the problem structure?

8
@ JQJNrI«EI?/ m:l\s!)ll??N Figure from Berkley Al



Consistency of a Single Arc

* Anarc X — Y is consistent iff for every x in the tail there is somey in the head which could be
assigned without violating a constraint

4

NT WA NT Q NSW v SA
Q

3 C___ I IFTE T I 1

NSW
\Y

Delete from the tail!

* Forward checking: Enforcing consistency of arcs pointing to each new assignment

@ JI}II!I“EIS"»’ IEVII:-\SDllggN Figure from Berkley Al



Arc Consistency of an Entire CSP

* Asimple form of propagation makes sure all arcs are consistent:

| NT fig WA NT Q NSW vV SA
‘SA o I | 1 [H E[ErN] 1

v 1\ VVV

Important: If X loses a value, neighbors of X need to be rechecked!
Arc consistency detects failure earlier than forward checking

Can be run as a preprocessor or after each assignment Remember: Delete
What’s the downside of enforcing arc consistency? from the tail!

10
@ JI-}JIVBIIEI% I:I;\gl??N Figure from Berkley Al



JMU

JAMES MADISON

UNIVERSITYo

Enforcing Arc Consistency in a CSP

function AC-3( csp) returns the CSP, possibly with reduced domains
inputs: csp, a binary CSP with variables { X, Xy, ..., X, }
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do
(Xi, X,) < REMOVE-FIRST(queue)
if REMOVE-INCONSISTENT-VALUES(.X;, X;) then
for each X} in NEIGHBORS[.X;] do
add (X, X;) to queue

function REMOVE-INCONSISTENT-VALUES( X, X;) returns true iff succeeds
removed < false
for each z in DOMAIN[X}] do
if no value y in DOMAIN[X]] allows (z,y) to satisfy the constraint X; < X
then delete = from DOMAIN[X]; removed — true
return removed

* Runtime: O(n%d3), can be reduced to O(n?d?)

* ... but detecting all possible future problems is NP-hard — why?

Figure from Berkley Al



Limitations of Arc Consistency

* After enforcing arc consistency: O
e Can have one solution left ‘
« Can have multiple solutions left ¢ o
e Can have no solutions left (and not
know it)

* Arc consistency still runs inside a
backtracking search! @ ¢'

What went
wrong here?

12
@ JI-}MIEI% IEVI;\SPIE?N Figure from Berkley Al



K-Consistency

* Increasing degrees of consistency

* 1-Consistency (Node Consistency): Each single node’s domain has a
value which meets that node’s unary constraints

» 2-Consistency (Arc Consistency): For each pair of nodes, any
consistent assignment to one can be extended to the other

» K-Consistency: For each k nodes, any consistent assignment to k-1 can
be extended to the k' node.

* Higher k more expensive to compute

* (You need to know the k=2 case: arc consistency)

@ JAMES MADISON
UNIVERSITY.

)
oG

Figure from Berkley Al



Strong K-Consistency

Strong k-consistency: also k-1, k-2, ... 1 consistent

Claim: strong n-consistency means we can solve without backtracking!

Why?
* Choose any assignment to any variable
* Choose a new variable
* By 2-consistency, there is a choice consistent with the first
* Choose a new variable
* By 3-consistency, there is a choice consistent with the first 2

Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path
consistency)

14
@ Jﬁxﬁi I:I;\gl??N Figure from Berkley Al



Intelligent Backtracking

Variable assignment order: {Q, NSW, V, T, SA, WA, NT}

Partial Assignment: {Q =red, NSW=green, V=blue,

T=red}
WA

What does normal backtracking do when it tries to
assignment SA a color?

JAMES MADISON ) 15
UNIVERSITY. Figure from Berkley Al



Intelligent Backtracking

Variable assignment order: {Q, NSW, V, T, SA, WA, NT}

Partial Assignment: {Q =red, NSW=green, V=blue,

T=red}
WA

What does normal backtracking do when it tries to
assignment SA a color?

e |t tries all 3 colors. None of these work. So backtrack
 Change the color of T and try SA again
e Still no assignment works for SA. So backtrack.

. * Etc.

How can we make this better?

16
@ JI-}II\{I\]EIS‘B’ 2‘14\3'??" Figure from Berkley Al




Intelligent Backtracking — Back jumping

Variable assignment order: {Q, NSW, V, T, SA, WA, NT}

Partial Assignment: {Q =red, NSW=green, V=blue,
T=red}

WA

ldea: Jump to a variable that is causing a problem.

Define a conflict set, which is built as we evaluate a

variable. So, for SA, we check:

e Can'tusered, Qis added to the conflict set for SA.

. e Can't use green, NSW is added to the conflict set for
SA.

e Can't use blue, Vis added to the conflict set for SA.

Backtrack to at least one of these variables so we

have a chance of correcting the issue.
@ JAMES MADISON https://inst.eecs.berkeley.edu/~cs188/fal9/assets/demos/csp/csp_demos.html Figure from Berkley Al Y

UNIVERSITYo



https://inst.eecs.berkeley.edu/~cs188/fa19/assets/demos/csp/csp_demos.html

Tree-Structured CSPs

* Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d?) time
 Compare to general CSPs, where worst-case time is O(d")

* This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

18
@ JI-}JIVBIIEI% I:I;\gl??N Figure from Berkley Al



Tree-Structured CSPs

e Algorithm for tree-structured CSPs:
* Order: Choose a root variable, order variables so that parents precede children

2

* Remove backward: Fori=n: 2, apply Removelnconsistent(Parent(X),X)
* Assign forward: For i =1 : n, assign X; consistently with Parent(X;)

e Runtime: O(n d?) (why?)

@ JAMES MADISON
UNIVERSITY.




Tree-Structured CSPs

e Claim 1: After backward pass, all root-to-leaf arcs are consistent

* Proof: Each X—Y was made consistent at one point and Y’s domain could not have been reduced
thereafter (because Y’s children were processed before Y

e Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
* Proof: Induction on position

 Why doesn’t this algorithm work with cycles in the constraint graph?

* Note: we’ll see this basic idea again with Bayes’ nets

20
@ Jﬁxﬁi I:I;\gl??N Figure from Berkley Al



Nearly Tree-Structured CSPs

@“b"’ o G
@‘0@ = £
® ®

* Conditioning: instantiate a variable, prune its neighbors' domains

* Cutset conditioning: instantiate (in all ways) a set of variables such that the
remaining constraint graph is a tree

 Cutset size c gives runtime O( (d¢) (n-c) d?), very fast for small c

JAMES MADISON ) 21
UNIVERSITY. Figure from Berkley Al



Cutset Conditioning

9‘!9

/°‘@

9‘@‘9
it
SN

Choose a cutset

| 1

Instantiate the cutset /
{ (all possible ways) } w‘w"@
| 1
| 1

o

(£)

& —©

Compute residual CSP o
for each assignment l l l
O—@ O—@ O—@
Solve the residual CSPs (1) (1) (1)
(tree structured) () () ()
O O O

22
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al



Cutset Quiz

* Find the smallest cutset for the graph below.

23
@ JI-}II\{I\]EIS‘B’ 2‘14\3'??" Figure from Berkley Al



Tree Decomposition

= |dea: create a tree-structured graph of mega-variables @
= Each mega-variable encodes part of the original CSP o
= Subproblems overlap to ensure consistent solutions @

> >
Q Q Q
= = =
o o o
a o o
< < <
Q Q Q
= = =
(%] w w

{(WA=r,SA=g,NT=b), {(NT=r,SA=g,Q=b), Agree: (M1,M2) e
(\/;/A:b,SA=r,NT=g), (N}T=b,SA=g,Q=r), {((wA=g,sA=g,NT=g), (NT=g,5A=g,Q=g)), ...}

@ JQM«EI% IEVI:\ lelfeN Figure from Berkley Al



Iterative Algorithms for CSPs

* Local search methods typically work with “complete” states, i.e., all variables assigned

* To apply to CSPs:
* Take an assignment with unsatisfied constraints
* Operators reassign variable values
* No fringe! Live on the edge.

0 00

* Algorithm:

While not solved:
Variable selection: randomly select any conflicted variable

Value selection: min-conflicts heuristic:
Choose a value that violates the fewest constraints
l.e., hill climb with h(n) = total number of violated constraints

25
@ Jﬁxﬁi I:I;\gl??N Figure from Berkley Al




Performance of Different CSP Algorithms

Problem Backtracking | BT+MRV Forward FC+MRV Min-
Checking Conflicts

USA (4 color) (> 1,000,000)
n-Queens (> 40,000,000)

26
@ JQM«EI% IEVI:\ lelfeN Figure from Berkley Al



Performance of Different CSP Algorithms

Problem Backtracking | BT+MRV Forward FC+MRV Min-
Checking Conflicts

USA (4 color) (>1,000,000) (>1,000,000)
n-Queens (> 40,000,000) 13,500,000

27
@ JQM«EI% IEVI:\ lelfeN Figure from Berkley Al



Performance of Different CSP Algorithms

Problem Backtracking | BT+MRV Forward Checking | FC+MRV Min-
Conflicts

USA (4 color) (>1,000,000) (>1,000,000) 2,000
n-Queens (> 40,000,000) 13,500,000 (>40,000,000)

28
@ J‘trh?qEI% 2?3'??" Figure from Berkley Al



Performance of Different CSP Algorithms

Problem Backtracking | BT+MRV Forward Checking | FC+MRV Min-
Conflicts

USA (4 color) (>1,000,000) (>1,000,000) 2,000
n-Queens (> 40,000,000) 13,500,000 (>40,000,000) 817,000

29
@ J‘trh?qEI% 2?3'??" Figure from Berkley Al



Performance of Different CSP Algorithms

Problem Backtracking | BT+MRV Forward Checking | FC+MRV Min-
Conflicts

USA (4 color) (>1,000,000) (>1,000,000) 2,000
n-Queens (> 40,000,000) 13,500,000 (> 40,000,000) 817,000 4,000

30
@ J‘trh?qEI% 2?3'??" Figure from Berkley Al



Don't Make Things too Complicated

* Given random initial state, can solve n-queens in almost constant time for arbitrary n
with high probability (e.g., n =10,000,000)!

* The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

o number of constraints W
number of variables
CPU
time

| R j
critical

J ratio . 31
UNIVERSITY. Figure from Berkley Al



CSP Summary

* CSPs are a special kind of search problem:
 States are partial assignments
* Goal test defined by constraints

W { ™ | F
* Basic solution: backtracking sear N
* Speed-ups:
* Ordering
* Filtering “’

e Structure

* |terative min-conflicts is often effective in practice

JAMES MADISON ) 32
UNIVERSITY. Figure from Berkley Al



