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Today

e Checkers: 1950: First computer player. 1994: First
computer champion: Chinook ended 40-year-reign of
human champion Marion Tinsley using complete 8-
piece endgame. 2007: Checkers solved!

SoLVED! +

* Chess: 1997: Deep Blue defeats human champion Gary
Kasparov in a six-game match. Deep Blue examined
200M positions per second, used very sophisticated
evaluation and undisclosed methods for extending
some lines of search up to 40 ply. Current programs |
are even better, if less historic. BRPERT

e Go: Human champions are now starting to be
challenged by machines. In go, b > 300! Classic
programs use pattern knowledge bases, but big recent
advances use neural networks developed by Google's HUMAN -
DeepMind research group (Alpha Go --
https://deepmind.com/research/case-studies/alphago-
the-story-so-far)
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https://deepmind.com/research/case-studies/alphago-the-story-so-far

What is Going On Under the Covers?
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Types of Games

* Many different kinds of games!

* Axes:
Deterministic or stochastic?
One, two, or more players?
Zero sum?

Perfect information (can you see the state)? -_ ————

* Want algorithms for calculating a strategy (policy) which recommends a
move from each state
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Deterministic Games

* Many possible formalizations, one is:
* States: S (start at s)
e Players: P={1...N} (usually take turns)
* Actions: A (may depend on player / state)
* Transition Function: SxA — S
e Terminal Test: S — {t,f}
 Terminal Utilities: SxP — R

* Solution for a player is a policy: S —> A
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Zero-Sum Games

* Zero-Sum Games * General Games
* Agents have opposite utilities (values on * Agents have independent utilities (values on
outcomes) outcomes)
e Lets us think of a single value that one e Cooperation, indifference, competition, and
maximizes and the other minimizes more are all possible
e Adversarial, pure competition * More later on non-zero-sum games
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Adversarial Search
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Single-Agent Trees
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Value of a State

Value of a state: Non-Terminal States:
The best achievable Vis)= max V(s

outcome (utility) s’ €children(s)
\ from that state p /_\

8
Terminal States:
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Adversarial Game Trees
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Minimax Values

States Under Agent’s Control: States Under Opponent’s Control:
V(s) = max V(') V(s') = min V(s)
s’ €successors(s) s€successors(s’)
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Terminal States:
V(s) = known
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Tic-Tac-Toe Game Tree
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Adversarial Search (Minimax)

* Deterministic, zero-sum games: Minimax values:
* Tic-tac-toe, chess, checkers computed recursively
* One player maximizes result

max
* The other minimizes result
« Minimax search: min
e A state-space search tree
* Players alternate turns / \ / \
 Compute each node’s minimax value: : é 5‘/ \é

the best achievable utility against a

rational (optimal) adversary Terminal val
erminail values:

part of the game
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Minimax Implementation

def max-value(state): def min-value(state):
initialize v = -0 initialize v = +oo
for each successor of state: <:> for each successor of state:
v = max(v, min-value(successor)) v = min(v, max-value(successor))
returnv returnv
V(s) = max V(s V(s = min V(s)
s’ Esuccessors(s) s€successors(s’)
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Minimax Implementation (Dispatch)

/def max-value(state): D
initialize v = -0
for each successor of state:

v = max(v, value(successor))

return v
)
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/def min-value(state): N
initialize v = +o0
for each successor of state:

v = min(v, value(successor))

return v
4
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Minimax Example
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Minimax Efficiency

* How efficient is minimax?
 Just like (exhaustive) DFS
* Time: O(b™)
e Space: O(bm)

* Example: Chess, b =35, m = 100
* Exact solution is completely infeasible
* Do we need to explore the entire tree?
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Minimax Properties

maxX

min

10 10 9 100

Optimal against a perfect player. Otherwise?
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Video of Demo Min Vs Exp (Min)
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Video of Demo Min vs Exp (Exp)

B - aoe o

9/11/2012

@ J/ME% yﬁsql??:\l Figure from Berkley Al



Resource Limits

* Problem: In realistic games, cannot search to leaves!
maX

Solution: Depth-limited search
* Instead, search only to a limited depth in the tree

* Replace terminal utilities with an evaluation function for non-
terminal positions

min

Example:
* Suppose we have 100 seconds, can explore 10K nodes / sec
* So can check 1M nodes per move
* o-f3 reaches about depth 8 — decent chess program

Guarantee of optimal play is gone

More plies makes a BIG difference

Use iterative deepening for an anytime algorithm

Figure from Berkley Al
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Search Depth Matters

* Evaluation functions are always
imperfect

* The deeper in the tree the
evaluation function is buried, the
less the quality of the evaluation
function matters

* An important example of the
tradeoff between complexity of
features and complexity of
computation
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Demo Limited Depth (2)
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Demo — Depth Limited (10)
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Evaluation Functions

e Evaluation functions score non-terminals in depth-limited search

White to move

Black to move

___________________

White slightly better Black winning

* |deal function: returns the actual minimax value of the position
* In practice: typically weighted linear sum of features:

Eval(s) = w1 f1(s) +wafo(s) + ...+ wnfn(s)

* e.g. f1(s) = (num white queens — num black queens), etc.
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Evaluation for Pacman — Thrashing (d=2)
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Why does Pacman Thrash and Starve
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* A danger of replanning agents!
* He knows his score will go up by eating the dot now (west, east)
* He knows his score will go up just as much by eating the dot later (east, west)
* There are no point-scoring opportunities after eating the dot (within the horizon, two here)

* Therefore, waiting seems just as good as eating: he may go east, then back west in the next
round of replanning!

Figure from Berkley Al
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Video — Thrashing Resolved — Fixed (d=2)
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Evaluation function includes proximity to the nearest food pellet.
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Game Tree Pruning
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Game Tree Pruning
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Alpha-Beta Pruning

* General configuration (MIN version)

We’re computing the MIN-VALUE at some node n
We’re looping over n’s children

n’s estimate of the childrens’ min is dropping
Who cares about n’s value? MAX

Let a be the best value that MAX can get at any choice
point along the current path from the root

If n becomes worse than a, MAX will avoid it, so we can
stop considering n’s other children (it’s already bad
enough that it won’t be played)

* MAX version is symmetric

JMU
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Alpha-Beta Pruning

/N
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Alpha-Beta Pruning Properties

This pruning has no effect on minimax value computed for the root!

Values of intermediate nodes might be wrong
* Important: children of the root may have the wrong value
e So the most naive version won’t let you do action selection

max

Good child ordering improves effectiveness of pruning min

With “perfect ordering”:
* Time complexity drops to O(b™?)
* Doubles solvable depth! 10 10 0
* Full search of, e.g. chess, is still hopeless...

This is a simple example of metareasoning (computing about what to compute)
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Alpha Beta Quiz
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