Artificial
Intelligence

Adversarial Search
CS 444 — Spring 2021
Dr. Kevin Molloy

Department of Computer Science

Much of this lecture is taken from
JAMES MADISON : : :
@ UNIVERSITY, James Mad|50n UnIVGFSIty Dan Klein and Pieter Abbeel Al class at UC Berkeley

Today

e Checkers: 1950: First computer player. 1994: First
computer champion: Chinook ended 40-year-reign of
human champion Marion Tinsley using complete 8-
piece endgame. 2007: Checkers solved!

SoLVED! +

* Chess: 1997: Deep Blue defeats human champion Gary
Kasparov in a six-game match. Deep Blue examined
200M positions per second, used very sophisticated
evaluation and undisclosed methods for extending
some lines of search up to 40 ply. Current programs |
are even better, if less historic. BRPERT

e Go: Human champions are now starting to be
challenged by machines. In go, b > 300! Classic
programs use pattern knowledge bases, but big recent
advances use neural networks developed by Google's HUMAN -
DeepMind research group (Alpha Go --
https://deepmind.com/research/case-studies/alphago-
the-story-so-far)

. A BRICK L
Pacman Checkere Chess Go Facman

@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

https://deepmind.com/research/case-studies/alphago-the-story-so-far

What is Going On Under the Covers?

= Pydev - Eclipse

> W r Qv Q- v v v v % v v [| Pydev | 5Y Team

" —
T4 C5188 Pacman e

*® & & & & & &+ o o

11:18 AM
9/11/2012

E oA a0 ¥

@ J/ME% l];d;\sl)llfgg\l Figure from Berkley Al

Types of Games

* Many different kinds of games!

* Axes:
Deterministic or stochastic?
One, two, or more players?
Zero sum?

Perfect information (can you see the state)? -_ ————

* Want algorithms for calculating a strategy (policy) which recommends a
move from each state

@ JI-}II\{I\]EIS‘B’ IEVI;\SPIIIS'?N Figure from Berkley Al

Deterministic Games

* Many possible formalizations, one is:
* States: S (start at s)
e Players: P={1...N} (usually take turns)
* Actions: A (may depend on player / state)
* Transition Function: SxA — S
e Terminal Test: S — {t,f}
 Terminal Utilities: SxP — R

* Solution for a player is a policy: S —> A

@ JI-}II\{I\]EIS‘B’ IEVI;\SPIIIS'?N Figure from Berkley Al

Zero-Sum Games

* Zero-Sum Games * General Games
* Agents have opposite utilities (values on * Agents have independent utilities (values on
outcomes) outcomes)
e Lets us think of a single value that one e Cooperation, indifference, competition, and
maximizes and the other minimizes more are all possible
e Adversarial, pure competition * More later on non-zero-sum games

@ JAMES MADISON
UNIVERSITY.

Figure from Berkley Al

Adversarial Search

@ JQM«EI% IEVI;\SDllng Figure from Berkley Al

Single-Agent Trees

/\
D

T T~ T~
O B B

8
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Value of a State

Value of a state: Non-Terminal States:
The best achievable Vis)= max V(s

outcome (utility) s’ €children(s)
\ from that state p /_\

8
Terminal States:

/\ /\
Ol EOGE Eom
2 0 2 6 4 6
V(s) = known

@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Adversarial Game Trees

/\
3 -@ |

T~ T~
3 o > - ~JN ¢v N €. ©

10
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Minimax Values

States Under Agent’s Control: States Under Opponent’s Control:
V(s) = max V(') V(s') = min V(s)
s’ €successors(s) s€successors(s’)

€ -
/\
/\

’ _ ; ‘ .

{ulu)

-8 -5 -10 +8

Terminal States:
V(s) = known

11
@ JI-}II\{I\]EIS‘B’ 2‘14\3'??" Figure from Berkley Al

Tic-Tac-Toe Game Tree

MAX (X)
X X X
MIN (O) X X X
X X X
x[o x| Jo] [x
MAX (X) 0
x]o[x] [x]o X|o
MIN (O) X X
xJo[x] [xJo[x] [x]o]x
TERMINAL o[x| [o[o[x X
) X[x[o| [x[o[o
Utility -1 0 +1

JAMES MADISON) 12
UNIVERSITY. Figure from Berkley Al

Adversarial Search (Minimax)

* Deterministic, zero-sum games: Minimax values:
* Tic-tac-toe, chess, checkers computed recursively
* One player maximizes result

max
* The other minimizes result
« Minimax search: min
e A state-space search tree
* Players alternate turns / \ / \
 Compute each node’s minimax value: : é 5‘/ \é

the best achievable utility against a

rational (optimal) adversary Terminal val
erminail values:

part of the game

13
@ Jﬁxﬁi I:I;\gl??N Figure from Berkley Al

Minimax Implementation

def max-value(state): def min-value(state):
initialize v = -0 initialize v = +oo
for each successor of state: <:> for each successor of state:
v = max(v, min-value(successor)) v = min(v, max-value(successor))
returnv returnv
V(s) = max V(s V(s = min V(s)
s’ Esuccessors(s) s€successors(s’)

14
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Minimax Implementation (Dispatch)

/def max-value(state): D
initialize v = -0
for each successor of state:

v = max(v, value(successor))

return v
)

@ JAMES MADISON
UNIVERSITY.

/def min-value(state): N
initialize v = +o0
for each successor of state:

v = min(v, value(successor))

return v
4

Figure from Berkley Al

Minimax Example

JAMES MADISON) 16
UNIVERSITY. Figure from Berkley Al

Minimax Efficiency

* How efficient is minimax?
 Just like (exhaustive) DFS
* Time: O(b™)
e Space: O(bm)

* Example: Chess, b =35, m = 100
* Exact solution is completely infeasible
* Do we need to explore the entire tree?

17
@ JI-}II!I“EI% IEVI;\S!)J??N Figure from Berkley Al

Minimax Properties

maxX

min

10 10 9 100

Optimal against a perfect player. Otherwise?

JAMES MADISON) 18
UNIVERSITY. Figure from Berkley Al

Video of Demo Min Vs Exp (Min)

74 CS188 Pacman -

11:43 AM
9/11/2012

@ J/ME% yﬁsql??:\l Figure from Berkley Al

Video of Demo Min vs Exp (Exp)

B - aoe o

9/11/2012

@ J/ME% yﬁsql??:\l Figure from Berkley Al

Resource Limits

* Problem: In realistic games, cannot search to leaves!
maX

Solution: Depth-limited search
* Instead, search only to a limited depth in the tree

* Replace terminal utilities with an evaluation function for non-
terminal positions

min

Example:
* Suppose we have 100 seconds, can explore 10K nodes / sec
* So can check 1M nodes per move
* o-f3 reaches about depth 8 — decent chess program

Guarantee of optimal play is gone

More plies makes a BIG difference

Use iterative deepening for an anytime algorithm

Figure from Berkley Al

@ JAMES MADISON
UNIVERSITY.

Search Depth Matters

* Evaluation functions are always
imperfect

* The deeper in the tree the
evaluation function is buried, the
less the quality of the evaluation
function matters

* An important example of the
tradeoff between complexity of
features and complexity of
computation

22
@ JQM«EI% IEVI;\SDllng Figure from Berkley Al

Demo Limited Depth (2)

m

e Edt Nafiey 5188 Pacman g e S|

[[Pydev | &7 Team

]

& Consolff

SmartGhos}

11:50 AM

9% B .)
= ol LU R,

JAMES MADISON .
UNIVERSITY. Figure from Berkley Al

Demo — Depth Limited (10)

= Pydev - Eclipse

- >
74 CS188 Pacman = [(——,

G a0 M

9/11/2012

@ J/ME% l];d;\sl)llfgg\l Figure from Berkley Al

Evaluation Functions

e Evaluation functions score non-terminals in depth-limited search

White to move

Black to move

White slightly better Black winning

* |deal function: returns the actual minimax value of the position
* In practice: typically weighted linear sum of features:

Eval(s) = w1 f1(s) +wafo(s) + ...+ wnfn(s)

* e.g. f1(s) = (num white queens — num black queens), etc.

25
@ JQJNrI«EI% IEVI;\SDI??N Figure from Berkley Al

Evaluation for Pacman — Thrashing (d=2)

@ Jltl\ilﬁi gnl:xgl??:\l Figure from Berkley Al

Why does Pacman Thrash and Starve

/\
X

3 -
| /\
B -3 - - 3

* A danger of replanning agents!
* He knows his score will go up by eating the dot now (west, east)
* He knows his score will go up just as much by eating the dot later (east, west)
* There are no point-scoring opportunities after eating the dot (within the horizon, two here)

* Therefore, waiting seems just as good as eating: he may go east, then back west in the next
round of replanning!

Figure from Berkley Al

@ JAMES MADISON
UNIVERSITY.

Video — Thrashing Resolved — Fixed (d=2)

2lNcmm TR EE X E

Evaluation function includes proximity to the nearest food pellet.

@ J/ME% l];d;\sl)llfgg\l Figure from Berkley Al

Game Tree Pruning

JAMES MADISON) 29
UNIVERSITY. Figure from Berkley Al

Game Tree Pruning

JAMES MADISON) 30
UNIVERSITY. Figure from Berkley Al

Alpha-Beta Pruning

* General configuration (MIN version)

We’re computing the MIN-VALUE at some node n
We’re looping over n’s children

n’s estimate of the childrens’ min is dropping
Who cares about n’s value? MAX

Let a be the best value that MAX can get at any choice
point along the current path from the root

If n becomes worse than a, MAX will avoid it, so we can
stop considering n’s other children (it’s already bad
enough that it won’t be played)

* MAX version is symmetric

JMU

JAMES MADISON

UNIVERSITYo

MAX

MIN

MAX

MIN

Figure from Berkley Al

Alpha-Beta Pruning

/N

JAMES MADISON) 32
UNIVERSITY. Figure from Berkley Al

Alpha-Beta Pruning Properties

This pruning has no effect on minimax value computed for the root!

Values of intermediate nodes might be wrong
* Important: children of the root may have the wrong value
e So the most naive version won’t let you do action selection

max

Good child ordering improves effectiveness of pruning min

With “perfect ordering”:
* Time complexity drops to O(b™?)
* Doubles solvable depth! 10 10 0
* Full search of, e.g. chess, is still hopeless...

This is a simple example of metareasoning (computing about what to compute)

33
@ Jﬁxﬁi I:I;\gl??N Figure from Berkley Al

Alpha Beta Quiz

10 8 4 50

JAMES MADISON . 34
IIIIIIIIIII Figure from Berkley Al

