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Today

Expand search to address games with
uncertain outcomes.
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Alpha Beta Quiz

alpha= -np.inf
beta = np.inf
best_action = None
for a in game.actions(state):
v = min_value(game.result(state, a),alpha, beta)
if v> alpha:
alpha=v
best_action=a
return best_action

def min_value(state, alpha, beta):
if game.terminal_test(state):
return game.utility(state, player)
v = np.inf
for a in game.actions(state):
v = min(v, max_value(game.result(state, a), alpha, beta))
if v <= alpha:
return v
beta = min(beta, v)
return v
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Worst-Case vs. Average Case

maxX

min
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ldea: Uncertain outcomes controlled by chance, not an adversary!
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Expectimax Search

Why wouldn’t we know what the result of an action will be?
* Explicit randomness: rolling dice
* Unpredictable opponents: the ghosts respond randomly
* Actions can fail: when moving a robot, wheels might slip

max

Values should now reflect average-case (expectimax) chance
outcomes, not worst-case (minimax) outcomes

* Expectimax search: compute the average score under optimal
play
* Max nodes as in minimax search 10 10 9 100

e Chance nodes are like min nodes but the outcome is uncertain
* Calculate their expected utilities

* |.e. take weighted average (expectation) of children

Later, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes
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Video of Minimax vs Expectimax
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Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def max-value(state): def exp-value(state):
initialize v = -0 initialize v=0
for each successor of state: <— 4> for each successor of state:
v = max(v, value(successor)) p = probability(successor)
return v v += p * value(successor)
return v
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Expectimax Pseudocode

def exp-value(state):
initializev=0
for each successor of state:

1/2
p = probability(successor) 1/3
v += p * value(successor) v
return v 8 24

v=(1/2)(8)+(1/3) (24) + (1/6) (-12) =10
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Expectimax Example

A\
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Expectimax Pruning?
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Depth-Limited Expectimax

Estimate of true \

expectimax value
(which would
require a lot of

work to compute)J
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Probabilities
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Probability Review

A random variable represents an event whose outcome is unknown
A probability distribution is an assignment of weights to outcomes

0.25

Example: Traffic on freeway
* Random variable: T = whether there’s traffic
* Qutcomes: T in {none, light, heavy}
* Distribution: P(T=none) = 0.25, P(T=light) = 0.50, P(T=heavy) = 0.25

0.50

Some laws of probability (more later):
* Probabilities are always non-negative
* Probabilities over all possible outcomes sum to one

As we get more evidence, probabilities may change:
* P(T=heavy) =0.25, P(T=heavy | Hour=8am) = 0.60
* We'll talk about methods for reasoning and updating probabilities later

0.25
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Expectations Review

* The expected value of a function of a random variable is the
average, weighted by the probability distribution over
outcomes

 Example: How long to get to the airport?

Time: 20 min 30 min 60 min
X + X + X
Probability: 0.25 0.50 0.25
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* In expectimax search, we have a probabilistic m
how the opponent (or environment) will behave
state

What Probabilities to Use?

Model could be a simple uniform distribution (roll a die

Model could be sophisticated and require a great deal of
computation

We have a chance node for any outcome out of our contr
opponent or environment

The model might say that adversarial actions are likely!

‘7

of
2

7

* For now, assume each chance node magically comes
along with probabilities that specify the distribution
over its outcomes

JMU

JAMES MADISON
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Having a probabilistic belief about
another agent’s action does not mean

that the agent is flipping any coins! .
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Quiz: Informed Probabilities

* Let’s say you know that your opponent is actually running a depth 2 minimax, using the
result 80% of the time, and moving randomly otherwise

* Question: What tree search should you use?

To figure out EACH chance node’s probabilities,
QQO you have to run a simulation of your opponent
1 0.9

This kind of thing gets very slow very quickly

Even worse if you have to simulate your

/\A /\A opponent simulating you...

= ... except for minimax, which has the nice
property that it all collapses into one game tree
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The Dangers of Optimism and Pessimism

Dangerous Optimism Dangerous Pessimism
Assuming chance when the world is adversarial Assuming the worst case when it’s not likely
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Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Expectimax
Pacman

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman
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World Assumption Demo — Random Ghost Expectimax Pacman
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World Assumption Demo — Adversarial Ghost Minimax Pacman
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World Assumption Demo — Adversarial Ghost Expectimax Pacman
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World Assumption Demo — Random Ghost Minimax Pacman
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Assumptions vs. Reality

Adversarial Ghost Random Ghost
NS Won 5/5 Won 5/5
Pacman Avg. Score: 483 Avg. Score: 493
Expectimax Won 1/5 Won 5/5
Pacman Avg. Score: -303 Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman
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Example: Backgammon

* Dice rolls increase b: 21 possible rolls with 2 dice

e Backgammon = 20 legal moves
« Depth2=20x(21x20)3=1.2x10°

* As depth increases, probability of reaching a given
search node shrinks
e So usefulness of search is diminished

* So limiting depth is less damaging
e But pruning is trickier...

e Historic Al: TDGammon uses depth-2 search + very
good evaluation function + reinforcement learning:

world-champion level play
e 15t Al world champion in any game!

Image: Wikipedia

Figure from Berkley Al
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Other Game Types
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Mixed Layer Types

* E.g. Backgammon

* Expectiminimax
* Environment is an

extra “random
agent” player that

moves after each
min/max agent

* Each node
computes the
appropriate
combination of its
children

Q-
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Multi-Agent Utilities

 What if the game is not zero-sum, or has multiple players?

e Generalization of minimax:
* Terminals have utility tuples

* Node values are also utility tuples

e Each player maximizes its own component

e Can give rise to cooperation and
competition dynamically...

1,6,6 7,1,2 6,1,2 7,2,1 5,1,7 1,5,2 7,7,1 5,2,5
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Utilities
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Maximum Expected Utility
* Why should we average utilities? Why not minimax?

* Principle of maximum expected utility:

* Arational agent should chose the action that maximizes its
expected utility, given its knowledge

* Questions:

* Where do utilities come from?

* How do we know such utilities even exist?

* How do we know that averaging even makes sense?

* What if our behavior (preferences) can’t be described by utilities?
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What Utilities to Use?

0 || 40 20|30 x | o||1600] [400| 900

* For worst-case minimax reasoning, terminal function scale doesn’t matter
* We just want better states to have higher evaluations (get the ordering right)
* We call this insensitivity to monotonic transformations

* For average-case expectimax reasoning, we need magnitudes to be meaningful
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Utilities

 Utilities are functions from outcomes
(states of the world) to real numbers
that describe an agent’s preferences

 Where do utilities come from?
* In a game, may be simple (+1/-1)
 Utilities summarize the agent’s goals

* Theorem: any “rational” preferences can
be summarized as a utility function

e We hard-wire utilities and let behaviors
emerge

* Why don’t we let agents pick utilities?
 Why don’t we prescribe behaviors?
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Utilities: Uncertain Outcomes

Getting ice cream

Get Single Get Double

Whew!
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Preferences

* An agent must have preferences among: A Prize A Lottery

* Prizes: A, B, etc. 4 N\

* Lotteries: situations with uncertain prizes A

1-
L=[pA; (1-p),B] o v

* Notation:

! inifference: A= B

A~ B
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Rationality
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Rational Preferences

* We want some constraints on preferences before we call them rational, such as:

[ Axiom of Transitivity: (4> B)A(B>C)=(A>C) ]

* For example: an agent with intransitive preferences can
be induced to give away all of its money @
e If B>C, then an agent with C would pay (say) 1 cent to get B
* If A> B, then an agent with B would pay (say) 1 cent to get A
e If C> A, then an agent with A would pay (say) 1 cent to get C

h 35
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al



Rational Preferences

The Axioms of Rationality

/Orderability \
(A-B)vV(B»A)V(A~B)
Transitivity
(A-B)AN(B>=C)=(A=C)
Continuity A\
A=B>=C=3p[p,A;, 1—p,C]~B
Substitutability
A~B=[p,A; 1—p,C]l~[p,B;1—p,C]
Monotonicity
A>B=

Z ,A, 1-— 7B t ,A, 1-— 7B /_zzﬁ'%—‘\
_ (r>qg<|[p p, B] = [q q ])/

Theorem: Rational preferences imply behavior describable as maximization of expected utility
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MEU Principle

* Theorem [Ramsey, 1931; von Neumann & Morgenstern, 1944]

* Given any preferences satisfying these constraints, there exists a real-valued
function U such that:

UA)>U(B) & A= B
U(lp1,S1; --- ;5 pn,Sn]) = >;p;U(S;)

* |.e.values assigned by U preserve preferences of both prizes and lotteries!

* Maximum expected utility (MEU) principle:
* Choose the action that maximizes expected utility

* Note: an agent can be entirely rational (consistent with MEU) without ever representing or
manipulating utilities and probabilities

* E.g., a lookup table for perfect tic-tac-toe, a reflex vacuum cleaner
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Human Utilities

SPIN THE WHEEL
OR
PAY $ T PASS
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Utility Scales

* Normalized utilities: u, =1.0, u.=0.0

* Micromorts: one-millionth chance of death, useful for paying to
reduce product risks, etc.

e QALYs: quality-adjusted life years, useful for medical decisions
involving substantial risk

* Note: behavior is invariant under positive linear transformation

U(x) = kiU(z) + k> where ky >0

* With deterministic prizes only (no lottery choices), only ordinal
utility can be determined, i.e., total order on prizes

39
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Human Utilities

 Utilities map states to real numbers. Which numbers?

e Standard approach to assessment (elicitation) of human utilities:
* Compare a prize A to a standard lottery L, between
* “best possible prize” u, with probability p
* “worst possible catastrophe” u_ with probability 1-p
* Adjust lottery probability p until indifference: A~ L,

SPIN THE WHEEL
OR
PAY $ To PASS

73

e Resulting p is a utility in [0,1]

4 N

{ Pay 530 } ~ 0.999999 0.000001

No change Instant death
- /
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Money

* Money does not behave as a utility function, but we can talk about the
utility of having money (or being in debt)

* Given a lottery L = [p, SX; (1-p), SY]
* The expected monetary value EMV(L) is p*X + (1-p)*Y
U(L) = p*U($X) + (1-p)*U(SY)
Typically, U(L) < U( EMV(L) )
In this sense, people are risk-averse
When deep in debt, people are risk-prone

A 00 o

+$
T T -
-150,000 800,000

//
-~
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Example: Insurance

* Consider the lottery [0.5, S1000; 0.5, S0]
* What is its expected monetary value? ($500)

 What is its certainty equivalent?
* Monetary value acceptable in lieu of lottery
* 5400 for most people

 Difference of $100 is the insurance premium

* There’s an insurance industry because people
will pay to reduce their risk

* If everyone were risk-neutral, no insurance
needed!

* It’s win-win: you’d rather have the $400 and the
insurance company would rather have the
lottery (their utility curve is flat and they have
many lotteries)

EVERYONE
WINS!
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Example: Human Rationality?

* Famous example of Allais (1953)

* A:[0.8,54k; 0.2, S0
* B: [1.0, $S3k; 0.0, SO]

e C:[0.2, S4k; 0.8, SO]
e D:[0.25, S3k; 0.75, SO]

* Most people preferB>A,C>D

* But if U(S0O) = 0, then
« B>A = U(S3k) > 0.8 U(54k)
e C>D = 0.8 U($4k) > U($3K)
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Next Time

* Quiz 1b and Quiz 2 Release tomorrow. Due Monday
* PA 2 Due next Friday

* Next time we will start discussion Markov Decision Processes (MDPs)
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