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Example: Grid World
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§ A maze-like problem
§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ 80% of the time, the action North takes the agent North 

(if there is no wall there)
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have 

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)

§ Goal: maximize sum of rewards



Grid World Actions
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Deterministic Grid World Stochastic Grid World



Markov Decision Processes

4
Figure from Berkley AI

• An MDP is defined by:
• A set of states s Î S
• A set of actions a Î A
• A transition function T(s, a, s’)

• Probability that a from s leads to s’, i.e., P(s’| s, a)
• Also called the model or the dynamics

• A reward function R(s, a, s’) 
• Sometimes just R(s) or R(s’)

• A start state
• Maybe a terminal state

• MDPs are non-deterministic search problems
• One way to solve them is with expectimax search
• We’ll have a new tool soon



Demo of GridWorld

5
Figure from Berkley AI



What is Markov about MDPs?
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• “Markov” generally means that given the present state, the future 
and the past are independent

• For Markov decision processes, “Markov” means action outcomes 
depend only on the current state

• This is just like search, where the successor function could only 
depend on the current state (not the history)

Andrey Markov 
(1856-1922)



Policies
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Optimal policy when R(s, a, s’) = -0.03 
for all non-terminals s

• In deterministic single-agent search problems, 
we wanted an optimal plan, or sequence of 
actions, from start to a goal

• For MDPs, we want an optimal policy p*: S → A
• A policy p gives an action for each state
• An optimal policy is one that maximizes expected 

utility if followed
• An explicit policy defines a reflex agent

• Expectimax didn’t compute entire policies
• It computed the action for a single state only



Optimal Policies
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R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01



Example: Racing
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• A robot car wants to travel far, quickly

• Three states: Cool, Warm, Overheated

• Two actions: Slow, Fast
• Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5 

0.5 

0.5 

0.5 

1.0 

1.0 

+1 

+1 

+1 

+2 

+2 

-10



Racing Search Tree
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MDP Search Trees
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• Each MDP state projects an expectimax-like search tree

a

s

sʼ

s, a

(s,a,sʼ) called a transition

T(s,a,sʼ) = P(sʼ|s,a)

R(s,a,sʼ)
s,a,sʼ

s is a state

(s, a) is a q-
state

(s, a) is a 
q-state



Utilities of Sequences
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• What preferences should an agent have over reward sequences?

• More or less?

• Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or



Discounting
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• It’s reasonable to maximize the sum of rewards
• It’s also reasonable to prefer rewards now to rewards later
• One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps



Discounting
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• How to discount?
• Each time we descend a level, we 

multiply in the discount once

• Why discount?
• Sooner rewards probably do have 

higher utility than later rewards
• Also helps our algorithms converge

• Example: discount of 0.5
• U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
• U([1,2,3]) < U([3,2,1])



Stationary Preferences
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• Theorem: if we assume stationary preferences:

• Then: there are only two ways to define utilities

• Additive utility:

• Discounted utility:



Quiz: Discounting
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• Given:

• Actions: East, West, and Exit (only available in exit states a, e)
• Transitions: deterministic

• Quiz 1: For g = 1, what is the optimal policy?

• Quiz 2: For g = 0.1, what is the optimal policy?

• Quiz 3: For which g are West and East equally good when in state d?



Infinite Utilities ?
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§ Problem: What if the game lasts forever?  Do we get infinite rewards?

§ Solutions:
§ Finite horizon: (similar to depth-limited search)

§ Terminate episodes after a fixed T steps (e.g. life)
§ Gives nonstationary policies (p depends on time left)

§ Discounting: use 0 < g < 1

§ Smaller g means smaller “horizon” – shorter term focus

§ Absorbing state: guarantee that for every policy, a terminal state will eventually 
be reached (like “overheated” for racing)



Recap: Defining MDPs
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• Markov decision processes:
• Set of states S
• Start state s0
• Set of actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount g)

• MDP quantities so far:
• Policy = Choice of action for each state
• Utility = sum of (discounted) rewards

a

s

s, a

s,a,sʼ
sʼ



Solving MDPs
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Optimal Quantities
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§ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state



Snapshot of Demo – Gridworld V Values
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Noise = 0.2
Discount = 0.9
Living reward = 0



Snapshot of Demo – Gridworld Q Values
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Noise = 0.2
Discount = 0.9
Living reward = 0



Values of States
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• Fundamental operation: compute the (expectimax) value of a state
• Expected utility under optimal action
• Average sum of (discounted) rewards
• This is just what expectimax computed!

• Recursive definition of value:

a

s

s, a

s,a,sʼ
sʼ



Racing Search Tree
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Racing Search Tree
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Racing Search Tree
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• We’re doing way too much work 
with expectimax!

• Problem: States are repeated 
• Idea: Only compute needed 

quantities once

• Problem: Tree goes on forever
• Idea: Do a depth-limited 

computation, but with increasing 
depths until change is small

• Note: deep parts of the tree 
eventually don’t matter if γ < 1



Time-Limited Values
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• Key idea: time-limited values

• Define Vk(s) to be the optimal value of s if the game ends in 
k more time steps
• Equivalently, it’s what a depth-k expectimax would give from s



k = 0
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 1
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 2
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 3
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 4
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 5
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 6
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 7
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 8
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 9
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 10
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 11

39
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0



k = 12
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 100
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Noise = 0.2
Discount = 0.9
Living reward = 0



Computing Time-Limited Values
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Value Iteration
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Value Iteration
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• Start with V0(s) = 0: no time steps left means an expected reward sum of zero

• Given vector of Vk(s) values, do one ply of expectimax from each state:

• Repeat until convergence

• Complexity of each iteration: O(S2A)

• Theorem: will converge to unique optimal values
• Basic idea: approximations get refined towards optimal values
• Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,sʼ
Vk(s’)



Example: Value Iteration
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0             0             0

2             1             0

3.5          2.5          0

Assume no discount!



Convergence*
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• How do we know the Vk vectors are going to converge?

• Case 1: If the tree has maximum depth M, then VM holds 
the actual untruncated values

• Case 2: If the discount is less than 1
• Sketch: For any state Vk and Vk+1 can be viewed as depth 

k+1 expectimax results in nearly identical search trees
• The difference is that on the bottom layer, Vk+1 has actual 

rewards while Vk has zeros
• That last layer is at best all RMAX

• It is at worst RMIN

• But everything is discounted by γk that far out
• So Vk and Vk+1 are at most γk max|R| different
• So as k increases, the values converge



Where to go from here
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• Policy-based methods



Demo of GridWorld
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