Artificial
Intelligence

Markov Decision Processes
CS 444 - Spring 2021
Dr. Kevin Molloy

Department of Computer Science

Much of this lecture is taken from
JAMES MADISON : ; :
@ UNIVERSITY, James Mad|son UnIVGFSIty Dan Klein and Pieter Abbeel Al class at UC Berkeley

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

= Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= If there is a wall in the direction the agent would have
been taken, the agent stays put

= The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

= Goal: maximize sum of rewards

@ J‘}M«El?/ IEVI:\ lelfeN Figure from Berkley Al

Grid World Actions

Deterministic Grid World Stochastic Grid World

@ J‘}M«El?/ IE\:nlelelfeN Figure from Berkley Al

Markov Decision Processes

 An MDP is defined by:

A set of statess € S

A set of actionsa € A

A transition function T(s, a, s’)
* Probability that a from s leadsto s/, i.e., P(s’| s, a)
* Also called the model or the dynamics

A reward function R(s, a, s’)
* Sometimes just R(s) or R(s’)

A start state

Maybe a terminal state

 MDPs are non-deterministic search problems
* One way to solve them is with expectimax search
* WEe’'ll have a new tool soon

@ J‘}M«El?/ IEVI:\ lelfeN Figure from Berkley Al

Demo of GridWorld

JAMES MADISON) 5
UNIVERSITY. Figure from Berkley Al

What is Markov about MDPs?

* “Markov” generally means that given the present state, the future
and the past are independent

* For Markov decision processes, “Markov” means action outcomes
depend only on the current state

P(St—i—l = S’\St — StaAt = Ay, Si—1 = St—1,At—1, .50 = So)

Andrey Markov
P(St_|_1 = 8/|St = S¢, At = Clt) (1856-1922)

* This is just like search, where the successor function could only
depend on the current state (not the history)

@ JI-}II\{I\]EIS‘B’ IEVI;\SPIIIS'?N Figure from Berkley Al

Policies

* |In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

* For MDPs, we want an optimal policy n*: S - A
* A policy 7 gives an action for each state

* An optimal policy is one that maximizes expected
utility if followed

* An explicit policy defines a reflex agent

Optimal policy when R(s, a, s’) =-0.03
* Expectimax didn’t compute entire policies for all non-terminals s
* It computed the action for a single state only

@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Optimal Policies

@ JI-}II!I“EI% IEVI;\S!)J??N Figure from Berkley Al

Example: Racing

* A robot car wants to travel far, quickly
* Three states: Cool, Warm, Overheated

* Two actions: Slow, Fast

0.5
* Going faster gets double reward

Slow

Overheated
1.0

@ JQMEI% IEVI;\SDllng Figure from Berkley Al

JAMES MADISON

UNIVERSITYo

Racing Search Tree

Figure from Berkley Al

MDP Search Trees

* Each MDP state projects an expectimax-like search tree

5,a,S

’ /—> (s,a,s’) called a transition
: T(s,a,s’) = P(s’|s,a)

R(s,a,s’)

N\

=

@ J‘trh?qEI% IEVII:\SDllng Figure from Berkley Al

Utilities of Sequences

* What preferences should an agent have over reward sequences?
* Moreorless? [1,2,2] or [2,3,4]

* Noworlater? [0,0,1] or [31,0,0]

12
@ JI-}II!I“EI% IEVI;\SPIIIS'?N Figure from Berkley Al

Discounting

* It’s reasonable to maximize the sum of rewards
* It’s also reasonable to prefer rewards now to rewards later
* One solution: values of rewards decay exponentially

s
v \

1 Y v

Worth Now Worth Next Step Worth In Two Steps

JAMES MADISON) 13
UNIVERSITY. Figure from Berkley Al

Discounting

e How to discount?

* Each time we descend a level, we
multiply in the discount once

 Why discount?

e Sooner rewards probably do have
higher utility than later rewards

* Also helps our algorithms converge

* Example: discount of 0.5
* U([1,2,3]) =1*1+0.5%2 + 0.25*3
* U([1,2,3]) < U([3,2,1])

14
@ JI-}II\{I\]EIS‘B’ IEVI;\SPIIIS'?N Figure from Berkley Al

Stationary Preferences

* Theorem: if we assume stationary preferences:

L 2

& \ 4
:z\°

[&1,&2, ..] — [bl,bg, ..]

0

[T7 ai, dz, ..] >~ [T, bl,bz, ..]

* Then: there are only two ways to define utilities

* Additive utility:
U([TO,?"]_,’I“Q,...]) =To—|-r1 —|—’r‘2—|—

U([T(_))T]_,?“Q, ..]) =70 -+ Y11 -+ ’)/27“2 “e

e Discounted utility:

15
@ JI-}II!I“EI% IEVI;\S!)J??N Figure from Berkley Al

Quiz: Discounting

e Given:

» Actions: East, West, and Exit (only available in exit states a, €)
e Transitions: deterministic

* Quiz 1: For y =1, what is the optimal policy? 10 1

* Quiz 2: For y=0.1, what is the optimal policy?

10 1

* Quiz 3: For which y are West and East equally good when in state d?

16
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Infinite Utilities ?

" Problem: What if the game lasts forever? Do we get infinite rewards?

= Solutions:

* Finite horizon: (similar to depth-limited search)

= Terminate episodes after a fixed T steps (e.g. life)
= Gives nonstationary policies (t depends on time left)

= Discounting: use0<y<1

U([ro,.--ro0)) = > v'r¢ < Rmax/(1 —7)

u SnldIICI Jornedatis DIIIdIICI_IIUIILUII = >lviter e ucus

= Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

JAMES MADISON) 17
UNIVERSITY. Figure from Berkley Al

Recap: Defining MDPs

* Markov decision processes:
e Set of states S

Start state s,

Set of actions A o

Transitions P(s’|s,a) (or T(s,a,s’))

Rewards R(s,a,s’) (and discount v)

* MDP quantities so far:
* Policy = Choice of action for each state
e Utility = sum of (discounted) rewards

18
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Solving MDPs

JAMES MADISON) 19
UNIVERSITY. Figure from Berkley Al

Optimal Quantities

V*(s) = expected utility starting in s and
acting optimally

The value (utility) of a g-state (s,a):

Q"(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

n'(s) = optimal action from state s

@ JAMES MADISON
UNIVERSITY.

Sisa
state

(s,a)is a
g-state

(s,a,s’) is a
transition

Figure from Berkley Al

Snapshot of Demo — Gridworld V Values

Gridworld Display

Noise = 0.2
VALUES AFTER 100 ITERATIONS Discount = 0.9

Living reward = 0

21
@ JI-}II\{I\]EIS‘B’ IEVI;\SPIIIS'?N Figure from Berkley Al

IIIIIIIIIII

Snapshot of Demo — Gridworld Q Values

Values of States

* Fundamental operation: compute the (expectimax) value of a state
* Expected utility under optimal action
* Average sum of (discounted) rewards
* This is just what expectimax computed!

* Recursive definition of value:

V() = maxQ*(s,a)
Q*(s,a) =) T(s,a, s {R(S, a,s) + 'yV*(s’)}

V*i(s) = mC?XZT(s, a,s) [R(s,a, s") + ny*(s’)}

S

23
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

JAMES MADISON

UNIVERSITYo

Racing Search Tree

Figure from Berkley Al

Racing Search Tree

OVHRE THENNTERAE TR THETERAE T T

JAMES MADISON) 25
UNIVERSITY. Figure from Berkley Al

Racing Search Tree

* We’re doing way too much work
with expectimax!

* Problem: States are repeated

* Idea: Only compute needed
quantities once

&5 &
* Problem: Tree goes on forever fl fl m fl fl m fl m
* |dea: Do a depth-limited

computation, but with increasing

depths until change is small
* Note: deep parts of the tree
eventually don’t matterify<1

TR TRELL LI TTRLLL THTIRLLL

JAMES MADISON) 26
UNIVERSITY. Figure from Berkley Al

Time-Limited Values

* Key idea: time-limited values

* Define V,(s) to be the optimal value of s if the game ends in
k more time steps

* Equivalently, it’s what a depth-k expectimax would give from s

@ Va(@)

T

CROCA A

27
@ JI-}II!I“EI% IEVI;\SPIIIS'?N Figure from Berkley Al

k

0

VALUES AFTER O ITERATIONS Discount = 0.9

Living reward = 0

Noise = 0.2

@ JAUthI% yfﬁ'??" Figure from Berkley Al

Noise = 0.2
Discount = 0.9
Living reward = 0

@ J/ME% l];d;\sl)llfgg\l Figure from Berkley Al

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 2 ITERATIONS

@ JAUMNEI% I:I;\SDII??N Figure from Berkley Al

Noise = 0.2
Discount = 0.9
Living reward =0

VALUES AFTER 3 ITERATIONS

31
@ J%T:EI% I:I;\&PIE?N Figure from Berkley Al

Noise = 0.2
Discount = 0.9
Living reward = 0

32
@ Jﬁxﬁi I:I;\gl??N Figure from Berkley Al

VALUES AFTER 4 ITERATIONS

k=5

Cridworld Display

.
A
H n

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

JAMES MADISON) 33
UNIVERSITY. Figure from Berkley Al

k=6

GCridworld Display

Noise = 0.2
Discount = 0.9
Living reward =0

JAMES MADISON . 34
UNIVERSITY. Figure from Berkley Al

VALUES AFTER 6 ITERATIONS

k=7

Gridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

JAMES MADISON) 35
UNIVERSITY. Figure from Berkley Al

k=8

Cridworld Display

Noise = 0.2
Discount = 0.9
Living reward = 0

JAMES MADISON) 36
UNIVERSITY. Figure from Berkley Al

VALUES AFTER 8 ITERATIONS

k=9

Gridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

JAMES MADISON) 37
UNIVERSITY. Figure from Berkley Al

k=10

Gridworld Display

Noise = 0.2
Discount = 0.9
Living reward = 0

38
@ JI-}II\{I\]EIS‘Z, gnlgxglfgn Figure from Berkley Al

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward =0

VALUES AFTER 11 ITERATIONS

JAMES MADISON) 39
UNIVERSITY. Figure from Berkley Al

k=12

Cridworld Display

Noise = 0.2
Discount = 0.9
Living reward = 0

JAMES MADISON . 40
UNIVERSITY. Figure from Berkley Al

VALUES AFTER 12 ITERATIONS

k =100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9

Living reward = 0

41
@ JI-}II!I“EIS‘Z, 'EV'I{‘B'??" Figure from Berkley Al

Computing Time-Limited Values

Nie) Vi(e) Vi(ss) | (T N

VO | O Y W | A S

A [\ o

Wwi@) Wie) V(&) <:| THETREHTELL N LU T DU VHTTRLLL

42
@ JQM«EI% IEVI;\SDI??N Figure from Berkley Al

Value lteration

JAMES MADISON . 43
IIIIIIIIIII Figure from Berkley Al

Value lteration

Start with V,(s) = 0: no time steps left means an expected reward sum of zero

e Given vector of V,(s) values, do one ply of expectimax from each state:

Viet1(s) < mC?XZT(S,a,, s") {R(s,a, s + vvk(s/)}

Repeat until convergence

Complexity of each iteration: O(S%A)

* Theorem: will converge to unique optimal values
* Basic idea: approximations get refined towards optimal values
* Policy may converge long before values do

44
@ JI-}JIVBIIEI% I:I;\gl??N Figure from Berkley Al

Example: Value Iteration

Overheated

Assume no discount!

Viet1(8) maaXZT(s, a,s’) [R(s, a,s’) + ’ka(s’)}

S

JAMES MADISON . 45
UNIVERSITY. Figure from Berkley Al

Convergence*

* How do we know the V|, vectors are going to converge?

Vi (s) Vit1(s)

* Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

e Case 2: If the discount is less than 1

e Sketch: For any state V, and V,,; can be viewed as depth
k+1 expectimax results in nearly identical search trees

* The difference is that on the bottom layer, V,.,; has actual
rewards while V| has zeros

* That last layer is at best all Ryax
* [tisat worst Ry

* But everything is discounted by y* that far out / \ /

* So V, and V,,; are at most y* max|R| different
* So as k increases, the values converge

46
@ Jﬁxﬁi I:I;\gl??N Figure from Berkley Al

Where to go from here

* Policy-based methods

JAMES MADISON . 47
UNIVERSITY. Figure from Berkley Al

Demo of GridWorld

JAMES MADISON . 48
UNIVERSITY. Figure from Berkley Al

