
Artificial
Intelligence

CS 444 – Spring 2021
Dr. Kevin Molloy

Department of Computer Science
James Madison University Much of this lecture is taken from

Dan Klein and Pieter Abbeel AI class at UC Berkeley

Markov Decision Processes

Example: Grid World

2
Figure from Berkley AI

§ A maze-like problem
§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ 80% of the time, the action North takes the agent North

(if there is no wall there)
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)

§ Goal: maximize sum of rewards

Grid World Actions

3
Figure from Berkley AI

Deterministic Grid World Stochastic Grid World

Markov Decision Processes

4
Figure from Berkley AI

• An MDP is defined by:
• A set of states s Î S
• A set of actions a Î A
• A transition function T(s, a, s’)

• Probability that a from s leads to s’, i.e., P(s’| s, a)
• Also called the model or the dynamics

• A reward function R(s, a, s’)
• Sometimes just R(s) or R(s’)

• A start state
• Maybe a terminal state

• MDPs are non-deterministic search problems
• One way to solve them is with expectimax search
• We’ll have a new tool soon

Demo of GridWorld

5
Figure from Berkley AI

What is Markov about MDPs?

6
Figure from Berkley AI

• “Markov” generally means that given the present state, the future
and the past are independent

• For Markov decision processes, “Markov” means action outcomes
depend only on the current state

• This is just like search, where the successor function could only
depend on the current state (not the history)

Andrey Markov
(1856-1922)

Policies

7
Figure from Berkley AI

Optimal policy when R(s, a, s’) = -0.03
for all non-terminals s

• In deterministic single-agent search problems,
we wanted an optimal plan, or sequence of
actions, from start to a goal

• For MDPs, we want an optimal policy p*: S → A
• A policy p gives an action for each state
• An optimal policy is one that maximizes expected

utility if followed
• An explicit policy defines a reflex agent

• Expectimax didn’t compute entire policies
• It computed the action for a single state only

Optimal Policies

8
Figure from Berkley AI

R(s) = -2.0R(s) = -0.4

R(s) = -0.03R(s) = -0.01

Example: Racing

9
Figure from Berkley AI

• A robot car wants to travel far, quickly

• Three states: Cool, Warm, Overheated

• Two actions: Slow, Fast
• Going faster gets double reward

Cool

Warm

Overheated

Fast

Fast

Slow

Slow

0.5

0.5

0.5

0.5

1.0

1.0

+1

+1

+1

+2

+2

-10

Racing Search Tree

10
Figure from Berkley AI

MDP Search Trees

11
Figure from Berkley AI

• Each MDP state projects an expectimax-like search tree

a

s

sʼ

s, a

(s,a,sʼ) called a transition

T(s,a,sʼ) = P(sʼ|s,a)

R(s,a,sʼ)
s,a,sʼ

s is a state

(s, a) is a q-
state

(s, a) is a
q-state

Utilities of Sequences

12
Figure from Berkley AI

• What preferences should an agent have over reward sequences?

• More or less?

• Now or later?

[1, 2, 2] [2, 3, 4]or

[0, 0, 1] [1, 0, 0]or

Discounting

13
Figure from Berkley AI

• It’s reasonable to maximize the sum of rewards
• It’s also reasonable to prefer rewards now to rewards later
• One solution: values of rewards decay exponentially

Worth Now Worth Next Step Worth In Two Steps

Discounting

14
Figure from Berkley AI

• How to discount?
• Each time we descend a level, we

multiply in the discount once

• Why discount?
• Sooner rewards probably do have

higher utility than later rewards
• Also helps our algorithms converge

• Example: discount of 0.5
• U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
• U([1,2,3]) < U([3,2,1])

Stationary Preferences

15
Figure from Berkley AI

• Theorem: if we assume stationary preferences:

• Then: there are only two ways to define utilities

• Additive utility:

• Discounted utility:

Quiz: Discounting

16
Figure from Berkley AI

• Given:

• Actions: East, West, and Exit (only available in exit states a, e)
• Transitions: deterministic

• Quiz 1: For g = 1, what is the optimal policy?

• Quiz 2: For g = 0.1, what is the optimal policy?

• Quiz 3: For which g are West and East equally good when in state d?

Infinite Utilities ?

17
Figure from Berkley AI

§ Problem: What if the game lasts forever? Do we get infinite rewards?

§ Solutions:
§ Finite horizon: (similar to depth-limited search)

§ Terminate episodes after a fixed T steps (e.g. life)
§ Gives nonstationary policies (p depends on time left)

§ Discounting: use 0 < g < 1

§ Smaller g means smaller “horizon” – shorter term focus

§ Absorbing state: guarantee that for every policy, a terminal state will eventually
be reached (like “overheated” for racing)

Recap: Defining MDPs

18
Figure from Berkley AI

• Markov decision processes:
• Set of states S
• Start state s0
• Set of actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount g)

• MDP quantities so far:
• Policy = Choice of action for each state
• Utility = sum of (discounted) rewards

a

s

s, a

s,a,sʼ
sʼ

Solving MDPs

19
Figure from Berkley AI

Optimal Quantities

20
Figure from Berkley AI

§ The value (utility) of a state s:
V*(s) = expected utility starting in s and

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out

having taken action a from state s and
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a
transition

s,a,s’

s is a
state

(s, a) is a
q-state

Snapshot of Demo – Gridworld V Values

21
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

Snapshot of Demo – Gridworld Q Values

22
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

Values of States

23
Figure from Berkley AI

• Fundamental operation: compute the (expectimax) value of a state
• Expected utility under optimal action
• Average sum of (discounted) rewards
• This is just what expectimax computed!

• Recursive definition of value:

a

s

s, a

s,a,sʼ
sʼ

Racing Search Tree

24
Figure from Berkley AI

Racing Search Tree

25
Figure from Berkley AI

Racing Search Tree

26
Figure from Berkley AI

• We’re doing way too much work
with expectimax!

• Problem: States are repeated
• Idea: Only compute needed

quantities once

• Problem: Tree goes on forever
• Idea: Do a depth-limited

computation, but with increasing
depths until change is small

• Note: deep parts of the tree
eventually don’t matter if γ < 1

Time-Limited Values

27
Figure from Berkley AI

• Key idea: time-limited values

• Define Vk(s) to be the optimal value of s if the game ends in
k more time steps
• Equivalently, it’s what a depth-k expectimax would give from s

k = 0

28
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 1

29
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 2

30
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 3

31
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 4

32
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 5

33
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 6

34
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 7

35
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 8

36
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 9

37
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 10

38
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 11

39
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 12

40
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

k = 100

41
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0

Computing Time-Limited Values

42
Figure from Berkley AI

Value Iteration

43
Figure from Berkley AI

Value Iteration

44
Figure from Berkley AI

• Start with V0(s) = 0: no time steps left means an expected reward sum of zero

• Given vector of Vk(s) values, do one ply of expectimax from each state:

• Repeat until convergence

• Complexity of each iteration: O(S2A)

• Theorem: will converge to unique optimal values
• Basic idea: approximations get refined towards optimal values
• Policy may converge long before values do

a

Vk+1(s)

s, a

s,a,sʼ
Vk(s’)

Example: Value Iteration

45
Figure from Berkley AI

0 0 0

2 1 0

3.5 2.5 0

Assume no discount!

Convergence*

46
Figure from Berkley AI

• How do we know the Vk vectors are going to converge?

• Case 1: If the tree has maximum depth M, then VM holds
the actual untruncated values

• Case 2: If the discount is less than 1
• Sketch: For any state Vk and Vk+1 can be viewed as depth

k+1 expectimax results in nearly identical search trees
• The difference is that on the bottom layer, Vk+1 has actual

rewards while Vk has zeros
• That last layer is at best all RMAX

• It is at worst RMIN

• But everything is discounted by γk that far out
• So Vk and Vk+1 are at most γk max|R| different
• So as k increases, the values converge

Where to go from here

47
Figure from Berkley AI

• Policy-based methods

Demo of GridWorld

48
Figure from Berkley AI

