Artificial
Intelligence

Markov Decision Processes (Part 2)
CS 444 — Spring 2021
Dr. Kevin Molloy

Department of Computer Science

Much of this lecture is taken from
JAMES MADISON : ; :
@ UNIVERSITY, James Mad|son UnIVGFSIty Dan Klein and Pieter Abbeel Al class at UC Berkeley

Announcements

* HW 6 is will be release tomorrow. Due next Tuesday evening.

* Quiz 3a will be published Tuesday after class and due before class on
Thursday (March 11t) (so, March 10t in reality).

@ JAMES MADISON
UNIVERSITY.

Example: Grid World

A maze-like problem
= The agent lives in a grid
= Walls block the agent’s path

= Noisy movement: actions do not always go as planned

= 80% of the time, the action North takes the agent North
(if there is no wall there)

= 10% of the time, North takes the agent West; 10% East

= If there is a wall in the direction the agent would have
been taken, the agent stays put

= The agent receives rewards each time step
= Small “living” reward each step (can be negative)
= Big rewards come at the end (good or bad)

= Goal: maximize sum of rewards

@ J‘}M«El?/ IEVI:\ lelfeN Figure from Berkley Al

Recap: MDPs

* Markov decision processes:
e Set of states S

Start state s,

Set of actions A o

Transitions P(s’|s,a) (or T(s,a,s’))

Rewards R(s,a,s’) (and discount v)

* MDP quantities so far:
* Policy = Choice of action for each state
e Utility = sum of (discounted) rewards

@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Optimal Quantities

V*(s) = expected utility starting in s and
acting optimally

The value (utility) of a g-state (s,a):

Q’(s,a) = expected utility starting out
having taken action a from state s and
(thereafter) acting optimally

n'(s) = optimal action from state s

@ JAMES MADISON
UNIVERSITY.

Sisa
state

(s,a)is a
g-state

(s,a,s’) is a
transition

Figure from Berkley Al

Gridworld Values V* and Q*

Gridworld Display Gridworld Display

0.40

0.43 0.42

0.40 0.41 0.27

VALUES AFTER 100 ITERATIONS O-VALUES AFTER 100 ITERATIONS

@ JI-}II\{I\]EI% IEVI;\S!)J??N Figure from Berkley Al

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

7
@ JI-}II\{I\]EIS‘B’ 2‘14\3'??" Figure from Berkley Al

The Bellman Equations

* Definition of “optimal utility” via expectimax recurrence
gives a simple one-step lookahead relationship amongst
optimal utility values

V*(s) = maxQ*(s, a)

Q*(s,a) = ZT(S, a,s') [R(s, a,s’) + WV*(S/)}

V*i(s) = mC?XZT(S, a,s) {R(s, a,s’) + ’yV*(S’)}

S

* These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over

@ JI-}MIEI% IEVI;\SPIE?N Figure from Berkley Al

Value lteration

* Bellman equations characterize the optimal values:

V*i(s) = mC?XZT(S,a, s") [R(s,a, ") + ”yV*(s’)}

S

* Value iteration computes them:

Vig1(s) < max>_T(s,a,8") |R(s,a,5") 4+ v V()

S

 Value iteration is just a fixed point solution method
* ...though the V| vectors are also interpretable as time-limited values

@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Convergence*

* How do we know the V, vectors are going to converge?

Vi(s) Vit1(s)

* Case 1: If the tree has maximum depth M, then V,, holds
the actual untruncated values

e Case 2: If the discount is less than 1

e Sketch: For any state V, and V,,; can be viewed as depth
k+1 expectimax results in nearly identical search trees

* The difference is that on the bottom layer, V., has actual
rewards while V| has zeros

* That last layer is at best all Ryax
* Itis at worst Ry

* But everything is discounted by y* that far out / \ / \
* SoV, and V,,; are at most y* max|R| different

* So as k increases, the values converge

10
@ Jﬁxﬁi I:I;\gl??N Figure from Berkley Al

Policy Methods

Figure from Berkley Al

Policy Evaluation

JAMES MADISON) 12
UNIVERSITY. Figure from Berkley Al

Fixed Policies

Do the optimal action Do what 7 says to do

-’s,a,S

A A

7
A s

* Expectimax trees max over all actions to compute the optimal values

* If we fixed some policy 1t(s), then the tree would be simpler — only one action per state
 ...though the tree’s value would depend on which policy we fixed

13
@ JI-}IIVBIIEI% I:I;\gl??N Figure from Berkley Al

Utilities for a Fixed Policy

* Another basic operation: compute the utility of a state s under
a fixed (generally non-optimal) policy

* Define the utility of a state s, under a fixed policy =:
V™(s) = expected total discounted rewards starting in s and following &t

* Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =Y T(s,m(s),s)[R(s,m(s),s) + V" (s)]

14
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Example: Policy Evaluation

Always Go Right Always Go Forward

15
@ J‘}M«El% IE\:nlelelfeN Figure from Berkley Al

Example: Policy Evaluation

Always Go Right Always Go Forward

@ JI-}II\{I\]EI% IEVI;\S!)J??N Figure from Berkley Al

Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Voi(s) =0
/S;'&C(S),S,

Vi1 (s) <= > T(s,m(s), s)[R(s,m(s),8) + 4V (sH] * A

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
* Solve with Matlab (or your favorite linear system solver)

17
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Policy Extraction

JAMES MADISON) 18
UNIVERSITY. Figure from Berkley Al

Computing Actions from Values

.95 » -2l b .
e How should we act?
4« 0.89 -1.00
* It’s not obvious!
o . 0.92 0.91 0.80
* We need to do a mini-expectimax (one step) .n.

7*(s) = arg gnaXZT(s, a,s)[R(s,a,s") +~V*(s)]

S
* This is called policy extraction, since it gets the policy implied by the values

JAMES MADISON) 19
UNIVERSITY. Figure from Berkley Al

Computing Actions from Q-Values

* Let’s imagine we have the optimal g-values: WW
H hould t? v
* How should we act:
 Completely trivial to decide! }!4-!4

* Important lesson: actions are easier to select from g-values than values!

20
@ JQMEI% IEVI;\SDllng Figure from Berkley Al

Policy Iteration

UNIVERSITY. Figure from Berkley Al

Problems with Value Iteration

* Value iteration repeats the Bellman updates:

Vi41(s) < mC?XZT(S, a,s) [R(S,a,) + 'ka(s’)}

S

* Problem 1: It’s slow — O(S2A) per iteration

* Problem 2: The “max” at each state rarely changes

* Problem 3: The policy often converges long before the values

22
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

k

0

Noise = 0.2
Discount = 0.9

VALUES AFTER O ITERATIONS Living reward = 0

@ Jl-tjl\illEI% gﬂ;-\sl)llgo?N Figure from Berkley Al

Noise = 0.2
Discount = 0.9
Living reward = 0

@ J/ME% l];d;\sl)llfgg\l Figure from Berkley Al

VALUES AFTER 1 ITERATIONS

Noise = 0.2
VALUES AFTER 2 ITERATIONS Discount = 0.9
Living reward = 0

JAMES MADISON .
UNIVERSITY. Figure from Berkley Al

VALUES AFTER 3 ITERATIONS Npise =0.2
Discount = 0.9

Living reward =0

26
@ JI-}JI\IbIlEli I:I;\SDII??N Figure from Berkley Al

Noise = 0.2
VALUES AFTER 4 ITERATIONS Discount = 0.9

Living reward = 0

JAMES MADISON . 27
UNIVERSITY. Figure from Berkley Al

k=5

Cridworld Display

.H

A
“u

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

JAMES MADISON) 28
UNIVERSITY. Figure from Berkley Al

k=6

GCridworld Display

Noise = 0.2
VALUES AFTER 6 ITERATIONS Discount = 0.9

Living reward = 0

JAMES MADISON) 29
UNIVERSITY. Figure from Berkley Al

k=7

Gridworld Display

Noise = 0.2
Discount = 0.9
Living reward = 0

VALUES AFTER 7 ITERATIONS

30
@ JI-}II\{I\]EIS‘Z, gnlgxglfgn Figure from Berkley Al

k=8

Cridworld Display

Noise = 0.2
Discount = 0.9
Living reward = 0

JAMES MADISON) 31
UNIVERSITY. Figure from Berkley Al

VALUES AFTER 8 ITERATIONS

k=9

Cridworld Display

Noise = 0.2
Discount = 0.9
Living reward = 0

32
@ JI-}II\{I\]EIS‘Z, gnlgxglfgn Figure from Berkley Al

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0

JAMES MADISON) 33
UNIVERSITY. Figure from Berkley Al

VALUES AFTER 10 ITERATIONS

k=11

Cridworld Display

AFTER 11 ITERATIONS Noise = 0.2
Discount =0.9

Living reward = 0

JAMES MADISON . 34
UNIVERSITY. Figure from Berkley Al

k=12

Gridworld Display

Noise = 0.2
Discount = 0.9
Living reward = 0

JAMES MADISON) 35
UNIVERSITY. Figure from Berkley Al

VALUES AFTER 12 ITERATIONS

Policy Iteration

* Alternative approach for optimal values:

 Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

e Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

e Repeat steps until policy converges
* This is policy iteration

* |t’s still optimall!
e Can converge (much) faster under some conditions

36
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Comparison

e Evaluation: For fixed current policy =, find values with policy evaluation:
* I|terate until values convee:

AMORS ZT<s mi(s),s") |R(s,mi(s),s") + v V(s

* Improvement: For fixed values, get a better policy using policy extraction
* One-step look-ahead:

mi+1(s) = arg maxZT(s, a,s) [R(s, a,s’) + ’yVW’i(s/)}

8,

37
@ JI-}MIEI% IEVI;\SPIE?N Figure from Berkley Al

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

* |n value iteration:
* Every iteration updates both the values and (implicitly) the policy
 We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

* We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

» After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
* The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

38
@ J%T:EI% I:I;\&PIE?N Figure from Berkley Al

Summary: MDP Algorithms

* SO0 you want to....
* Compute optimal values: use value iteration or policy iteration
* Compute values for a particular policy: use policy evaluation
* Turn your values into a policy: use policy extraction (one-step lookahead)

* These all look the same!
* They basically are — they are all variations of Bellman updates
* They all use one-step lookahead expectimax fragments
* They differ only in whether we plug in a fixed policy or max over actions

39
@ J%T:EI% I:I;\&PIE?N Figure from Berkley Al

Double Bandits

Figure from Berkley Al

Double-Bandit MDP

e Actions: Blue, Red 4 N

No discount
e States: Win, Lose 025 S0 100 time steps

Both states have
the same value

41
@ JI}II!I“EIS"»’ IEVII:-\SDllggN Figure from Berkley Al

Offline Planning

* Solving MIDPs is offline planning /- ™

. o . No discount
* You determine all quantities through computation

. 100 time steps
* You need to know the details of the MDP

Both states have

* You do not actually play the game! the same value
/ Value \
Play Red 150
Play Blue 100

42
@ JI-}II\{I\]EI% IEVI;\S!)J??N Figure from Berkley Al

Let's Play!

S2 S2 SO0 S2 S2
S2 $2 SO0 SO SO

UNIVERSITY. Figure from Berkley Al

Online Planning

JAMES MADISON . 44
UNIVERSITY. Figure from Berkley Al

Let's Play!

SO SO SO S2 SO
S2 SO0 SO SO SO

UNIVERSITY. Figure from Berkley Al

What Just Happened?

* That wasn’t planning, it was learning!
 Specifically, reinforcement learning
* There was an MDP, but you couldn’t solve it with just computation
* You needed to actually act to figure it out

* Important ideas in reinforcement learning that came up

* Exploration: you have to try unknown actions to get information
Exploitation: eventually, you have to use what you know
Regret: even if you learn intelligently, you make mistakes
Sampling: because of chance, you have to try things repeatedly
Difficulty: learning can be much harder than solving a known MDP

46
@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Next Time: Reinforcement Learning!

JAMES MADISON . 47
IIIIIIIIIII Figure from Berkley Al

