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• HW 6 is will be release tomorrow.  Due next Tuesday evening.

• Quiz 3a will be published Tuesday after class and due before class on
Thursday (March 11th) (so, March 10th in reality). 

Announcements
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Example: Grid World
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Figure from Berkley AI

§ A maze-like problem
§ The agent lives in a grid
§ Walls block the agent’s path

§ Noisy movement: actions do not always go as planned
§ 80% of the time, the action North takes the agent North 

(if there is no wall there)
§ 10% of the time, North takes the agent West; 10% East
§ If there is a wall in the direction the agent would have 

been taken, the agent stays put

§ The agent receives rewards each time step
§ Small “living” reward each step (can be negative)
§ Big rewards come at the end (good or bad)

§ Goal: maximize sum of rewards



Recap: MDPs
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• Markov decision processes:
• Set of states S
• Start state s0
• Set of actions A
• Transitions P(s’|s,a) (or T(s,a,s’))
• Rewards R(s,a,s’) (and discount g)

• MDP quantities so far:
• Policy = Choice of action for each state
• Utility = sum of (discounted) rewards
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Optimal Quantities
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§ The value (utility) of a state s:
V*(s) = expected utility starting in s and 

acting optimally

§ The value (utility) of a q-state (s,a):
Q*(s,a) = expected utility starting out 

having taken action a from state s and 
(thereafter) acting optimally

§ The optimal policy:
p*(s) = optimal action from state s

a

s

s’

s, a

(s,a,s’) is a 
transition

s,a,s’

s is a 
state

(s, a) is a 
q-state



Gridworld Values V* and Q*
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The Bellman Equations
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How to be optimal:

Step 1: Take correct first action

Step 2: Keep being optimal



The Bellman Equations
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• Definition of “optimal utility” via expectimax recurrence 
gives a simple one-step lookahead relationship amongst 
optimal utility values

• These are the Bellman equations, and they characterize 
optimal values in a way we’ll use over and over
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Value Iteration
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• Bellman equations characterize the optimal values:

• Value iteration computes them:

• Value iteration is just a fixed point solution method
• … though the Vk vectors are also interpretable as time-limited values
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Convergence*
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• How do we know the Vk vectors are going to converge?

• Case 1: If the tree has maximum depth M, then VM holds 
the actual untruncated values

• Case 2: If the discount is less than 1
• Sketch: For any state Vk and Vk+1 can be viewed as depth 

k+1 expectimax results in nearly identical search trees
• The difference is that on the bottom layer, Vk+1 has actual 

rewards while Vk has zeros
• That last layer is at best all RMAX

• It is at worst RMIN

• But everything is discounted by γk that far out
• So Vk and Vk+1 are at most γk max|R| different
• So as k increases, the values converge



Policy Methods
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Policy Evaluation
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Fixed Policies
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• Expectimax trees max over all actions to compute the optimal values

• If we fixed some policy p(s), then the tree would be simpler – only one action per state
• … though the tree’s value would depend on which policy we fixed
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Do the optimal action Do what p says to do



Utilities for a Fixed Policy
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• Another basic operation: compute the utility of a state s under 
a fixed (generally non-optimal) policy

• Define the utility of a state s, under a fixed policy p:
Vp(s) = expected total discounted rewards starting in s and following p

• Recursive relation (one-step look-ahead / Bellman equation):
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Example: Policy Evaluation
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Always Go Right Always Go Forward



Example: Policy Evaluation
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Always Go Right Always Go Forward



Policy Evaluation
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• How do we calculate the V’s for a fixed policy p?

• Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

• Efficiency: O(S2) per iteration

• Idea 2: Without the maxes, the Bellman equations are just a linear system
• Solve with Matlab (or your favorite linear system solver)
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Policy Extraction
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Computing Actions from Values
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• Let’s imagine we have the optimal values V*(s)

• How should we act?
• It’s not obvious!

• We need to do a mini-expectimax (one step)

• This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values
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• Let’s imagine we have the optimal q-values:

• How should we act?
• Completely trivial to decide!

• Important lesson: actions are easier to select from q-values than values!



Policy Iteration
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Problems with Value Iteration
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• Value iteration repeats the Bellman updates:

• Problem 1: It’s slow – O(S2A) per iteration

• Problem 2: The “max” at each state rarely changes

• Problem 3: The policy often converges long before the values

a

s

s, a

s,a,sʼ
sʼ



k = 0
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 1
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 2
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 3
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 4
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 5
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 6
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 7
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 8
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 9

32
Figure from Berkley AI

Noise = 0.2
Discount = 0.9
Living reward = 0



k  = 10
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 11
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Noise = 0.2
Discount = 0.9
Living reward = 0



k = 12
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Noise = 0.2
Discount = 0.9
Living reward = 0



Policy Iteration
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• Alternative approach for optimal values:
• Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal 

utilities!) until convergence
• Step 2: Policy improvement: update policy using one-step look-ahead with resulting 

converged (but not optimal!) utilities as future values
• Repeat steps until policy converges

• This is policy iteration
• It’s still optimal!
• Can converge (much) faster under some conditions



Comparison
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• Evaluation: For fixed current policy p, find values with policy evaluation:
• Iterate until values convee:

• Improvement: For fixed values, get a better policy using policy extraction
• One-step look-ahead:



Comparison
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• Both value iteration and policy iteration compute the same thing (all optimal values)

• In value iteration:
• Every iteration updates both the values and (implicitly) the policy
• We don’t track the policy, but taking the max over actions implicitly recomputes it

• In policy iteration:
• We do several passes that update utilities with fixed policy (each pass is fast because we 

consider only one action, not all of them)
• After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
• The new policy will be better (or we’re done)

• Both are dynamic programs for solving MDPs



Summary: MDP Algorithms
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• So you want to….
• Compute optimal values: use value iteration or policy iteration
• Compute values for a particular policy: use policy evaluation
• Turn your values into a policy: use policy extraction (one-step lookahead)

• These all look the same!
• They basically are – they are all variations of Bellman updates
• They all use one-step lookahead expectimax fragments
• They differ only in whether we plug in a fixed policy or max over actions



Double Bandits
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Double-Bandit MDP
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• Actions: Blue, Red
• States: Win, Lose
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Offline Planning

42
Figure from Berkley AI

• Solving MDPs is offline planning
• You determine all quantities through computation
• You need to know the details of the MDP
• You do not actually play the game!
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Let's Play!
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Online Planning
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Let's Play!
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What Just Happened?
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• That wasn’t planning, it was learning!
• Specifically, reinforcement learning
• There was an MDP, but you couldn’t solve it with just computation
• You needed to actually act to figure it out

• Important ideas in reinforcement learning that came up
• Exploration: you have to try unknown actions to get information
• Exploitation: eventually, you have to use what you know
• Regret: even if you learn intelligently, you make mistakes
• Sampling: because of chance, you have to try things repeatedly
• Difficulty: learning can be much harder than solving a known MDP



Next Time: Reinforcement Learning!
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