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• HW 6 is will be release tomorrow.  Due next Tuesday evening.

• Quiz 3a will be published Tuesday after class and due before class on 
Thursday (March 11th) (so, March 10th in reality). 

Announcements
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Reinforcement Learning
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Figure from Berkley AI

• Basic idea:
• Receive feedback in the form of rewards
• Agent’s utility is defined by the reward function
• Must (learn to) act so as to maximize expected rewards
• All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r



Example: Learning to Walk/Run for Soccer
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Figure from Berkley AI

Initial A Learning Trial After Learning [1K Trials]



Example: Learning to Walk

Initial
[Video: AIBO WALK – initial]

[Kohl and Stone, ICRA 2004]



Training
[Video: AIBO WALK – training][Kohl and Stone, ICRA 2004]

Example: Learning to Walk



Finished
[Video: AIBO WALK – finished][Kohl and Stone, ICRA 2004]

Example: Learning to Walk



[Demo: Crawler Bot (L10D1)] 

Your Next Project: The Crawler



Video of the Crawler



Reinforcement Learning

Figure from Berkley AI

• Still assume a Markov decision process (MDP):
• A set of states s Î S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R
• I.e. we don’t know which states are good or what the actions do
• Must actually try actions and states out to learn



Offline (MDPs) vs. Online (RL)

Figure from Berkley AI

Offline Solution Online Learning



Model Learning

Figure from Berkley AI

• Model-Based Idea:
• Learn an approximate model based on experiences
• Solve for values as if the learned model were correct

• Step 1: Learn empirical MDP model
• Count outcomes s’ for each s, a
• Normalize to give an estimate of
• Discover each when we experience (s, a, s’)

• Step 2: Solve the learned MDP
• For example, use value iteration, as before



Example: Model-Based Learning

Figure from Berkley AI

Input Policy p

Assume: g = 1

Observed Episodes (Training) Learned Model

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

T(s,a,s’).
T(B, east, C) = 1.00
T(C, east, D) = 0.75
T(C, east, A) = 0.25

…

R(s,a,s’).
R(B, east, C) = -1
R(C, east, D) = -1
R(D, exit, x) = +10

…



Example: Expected Age

Figure from Berkley AI

Goal: Compute expected age of cs444 students

Unknown P(A): “Model Based” Unknown P(A): “Model Free”

Without P(A), instead collect samples [a1, a2, … aN]

Known P(A)

Why does this 
work?  Because 
samples appear 
with the right 
frequencies.

Why does this 
work?  Because 
eventually you 
learn the right 

model.



Model-Free Learning

Figure from Berkley AI



Passive Reinforcement Learning

Figure from Berkley AI



Passive Reinforcement Learning

Figure from Berkley AI

• Simplified task: policy evaluation
• Input: a fixed policy p(s)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• Goal: learn the state values

• In this case:
• Learner is “along for the ride”
• No choice about what actions to take
• Just execute the policy and learn from experience
• This is NOT offline planning!  You actually take actions in the world.



Direct Evaluation

Figure from Berkley AI

• Goal: Compute values for each state under p

• Idea: Average together observed sample values
• Act according to p
• Every time you visit a state, write down what the 

sum of discounted rewards turned out to be
• Average those samples

• This is called direct evaluation



Example: Direct Evaluation

Figure from Berkley AI

Input Policy p

Assume: g = 1

Observed Episodes (Training) Output Values

A

B C D

E

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

B, east, C, -1
C, east, D, -1
D, exit,  x, +10

E, north, C, -1
C, east,   A, -1
A, exit,    x, -10

Episode 1 Episode 2

Episode 3 Episode 4
E, north, C, -1
C, east,   D, -1
D, exit,    x, +10

A

B C D

E

+8 +4 +10

-10

-2



Problems with Direct Evaluation

Figure from Berkley AI

• What’s good about direct evaluation?
• It’s easy to understand
• It doesn’t require any knowledge of T, R
• It eventually computes the correct average values, 

using just sample transitions

• What bad about it?
• It wastes information about state connections
• Each state must be learned separately
• So, it takes a long time to learn

Output Values

A

B C D

E

+8 +4 +10

-10

-2

If B and E both go to C 
under this policy, how can 
their values be different?



Why Not Use Policy Evaluation?

Figure from Berkley AI

• Simplified Bellman updates calculate V for a fixed policy:
• Each round, replace V with a one-step-look-ahead layer over V

• This approach fully exploited the connections between the states
• Unfortunately, we need T and R to do it!

• Key question: how can we do this update to V without knowing T and R?
• In other words, how to we take a weighted average without knowing the weights?

p(s)

s

s, p(s)

s, p(s),sʼ
sʼ



Sample-based Policy Evaluation

Figure from Berkley AI

p(s)

s

s, p(s)

s1's2' s3'
s, p(s),s’

s'

Almost!  But we can’t 
rewind time to get sample 
after sample from state s.



Temporal Difference Learning

Figure from Berkley AI

• Big idea: learn from every experience!
• Update V(s) each time we experience a transition (s, a, s’, r)
• Likely outcomes s’ will contribute updates more often

• Temporal difference learning of values
• Policy still fixed, still doing evaluation!
• Move values toward value of whatever successor occurs: running average

p(s)
s

s, p(s)

s’

Sample of V(s):

Update to V(s):

Same update:



Exponential Moving Average

Figure from Berkley AI

• Exponential moving average 
• The running interpolation update:

• Makes recent samples more important:

• Forgets about the past (distant past values were wrong anyway)

• Decreasing learning rate (alpha) can give converging averages



Example: Temporal Difference Learning

Figure from Berkley AI

Assume: g = 1, α = 1/2

Observed Transitions

B, east, C, -2

0

0 0 8

0

0

-1 0 8

0

0

-1 3 8

0

C, east, D, -2

A

B C D

E

States



Problems with TD Value Learning

Figure from Berkley AI

• TD value leaning is a model-free way to do policy evaluation, mimicking 
Bellman updates with running sample averages
• However, if we want to turn values into a (new) policy, we’re sunk:

• Idea: learn Q-values, not values
• Makes action selection model-free too!

a

s

s, a

s,a,sʼ
sʼ



Active Reinforcement Learning

Figure from Berkley AI



Active Reinforcement Learning

Figure from Berkley AI

• Full reinforcement learning: optimal policies (like value iteration)
• You don’t know the transitions T(s,a,s’)
• You don’t know the rewards R(s,a,s’)
• You choose the actions now
• Goal: learn the optimal policy / values

• In this case:
• Learner makes choices!
• Fundamental tradeoff: exploration vs. exploitation
• This is NOT offline planning!  You actually take actions in the world and find 

out what happens…



Detour: Q-Value Iteration

Figure from Berkley AI

• Value iteration: find successive (depth-limited) values
• Start with V0(s) = 0, which we know is right
• Given Vk, calculate the depth k+1 values for all states:

• But Q-values are more useful, so compute them instead
• Start with Q0(s,a) = 0, which we know is right
• Given Qk, calculate the depth k+1 q-values for all q-states:



Q-Learning

Figure from Berkley AI

• Q-Learning: sample-based Q-value iteration

• Learn Q(s,a) values as you go
• Receive a sample (s,a,s’,r)
• Consider your old estimate:
• Consider your new sample estimate:

• Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]



Demo of Q-Learning Gridworld

Figure from Berkley AI



Demo of Q-Learning -- Crawler

Figure from Berkley AI



Q-Learning Properties

Figure from Berkley AI

• Amazing result: Q-learning converges to optimal policy -- even 
if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
• You have to explore enough
• You have to eventually make the learning rate

small enough
• … but not decrease it too quickly
• Basically, in the limit, it doesn’t matter how you select actions (!)


