Artificial
Intelligence

Reinforcement Learning (Part 2)
CS 444 — Spring 2021
Dr. Kevin Molloy

Department of Computer Science

Much of this lecture is taken from
JAMES MADISON : : :
@ UNIVERSITY, James Mad|50n UnIVGFSIty Dan Klein and Pieter Abbeel Al class at UC Berkeley

Announcements

* HW 6 due tonight.

* Quiz 3a will be published today after class and due before class next
Tuesday.

 HW 7 will be release over the weekend and will focus on reinforcement
learning.

* PA 3 is posted on the class website.

@ JAMES MADISON
UNIVERSITY.

Reinforcement Learning

* We still assume an MDP:
 Asetofstatess €S
* A set of actions (per state) A
A model T(s,a,s’)
* Areward function R(s,a,s’)

» Still looking for a policy 7(s)
* New twist: don’t know T or R, so must try out actions

* Big idea: Compute all averages over T using sample outcomes

@ JI-}II!I“EI% IEVI;\SPIIIS'?N Figure from Berkley Al

The Story So Far: MDPs and RL

Known MDP: Offline Solution

Unknown MDP: Model-Based Unknown MDP: Model-Free
, O g , O
Goal Technique Goal Technique
Compute V*, Q*, n* VI/PI on approx. MDP Compute V*, Q*, n* Q-learning
Evaluate a fixed policy PE on approx. MDP Evaluate a fixed policy Value Learning
N / \ /

@ JAUI!I«EI% EMRASDllfeN Figure from Berkley Al

Model-Free Learning

: : S
* Model-free (temporal difference) learning
: . a
* Experience world through episodes
s, a
(s,a,r,s",a’,r',s" a" r" " .. .) r
* Update estimates each transition (3, a, T, 3’) A S
. . . . a’
* Over time, updates will mimic Bellman updates o
s, a
AS”

@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Q-Learning

 We'd like to do Q-value updates to each Q-state:
Qit1(s5,0) ¢ Y T(s,0,8) | R(s,0.8) + 7 max Qu(s',)
s’ a

e But can’t compute this update without knowing T, R

* Instead, compute average as we go
* Receive a sample transition (s,a,r,s’)
This sample suggests

Q(s,a) ~ 1+ ymaxQ(s',)

But we want to average over results from (s,a) (Why?)

So keep a running average

Qs,a) — (1= a)Q(s,a) + (@) [r + ymaxQ(s',a)

@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

Q-Learning Properties

* Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

* This is called off-policy learning

* Caveats:
* You have to explore enough
* You have to eventually make the learning rate
small enough
* ... but not decrease it too quickly
e Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning — auto — cliff grid (L11D1)]

@ JI-}IIVBIIEI% IEVI;\SPJ??N Figure from Berkley Al

[[Pydev | &Y Team

Example: Q-Learning Auto Cliff Grid

- Pydev - Eclipse
File Edit Nawigate Search Project Run Window Help
v Q- Q- v v - v
& =
= o
] o

] Console i
> -0.0
11:24 AM
cARC® 0

URN WAS -

<terminated
10 COMPLETE: RETUR

BEGINNI

Figure from Berkley Al

JAMES MADISON

IMILY #0055 Yeeis!

Exploration vs. Exploitation

b7

ND
GRP;;NG!

L 70
Oy

-

@ J‘}M«EI% IE\:nlelelfeN Figure from Berkley Al

How to Explore?

* Several schemes for forcing exploration

e Simplest: random actions (e-greedy)
* Every time step, flip a coin
* With (small) probability €, act randomly
* With (large) probability 1-¢, act on current policy

 Problems with random actions?

* You do eventually explore the space, but keep thrashing around
once learning is done

* One solution: lower € over time
* Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]
@ JAMES MADISON

UNIVERSITY. Figure from Berkley Al

Demo Q-Learning — Manual Exploration — Bridge Grid

+
BCOCoE
BoEEn

@ Jltlvblllf% I:I;\gl??:\l Figure from Berkley Al

I [Pydev |S” Team

Run l Skip 1000000 step j Stop || Skip 30000 slech Reset speed counter ResetQ

average speed .-1.0671648197531216

Q-Learning — Epsilon Greedy - Crawler

| =) Applet

gam- ' gam++ alpha- alpha++
o

eps++

Q Console &3
11:31 AM
AHe® o

=5 G

BotQLearning [Java Application] C:\Program Files (x86)\Java\jre7\bin\javaw.exe (Sep 27, 2012 11:31:20 AM)

Figure from Berkley Al

JAMES MADISON

IMILY #0055 Yeeis!

Exploration Functions

* When to explore?
 Random actions: explore a fixed amount

» Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

* Exploration function

* Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: (s, a) <—a R(s,a,s") +~ max Q(s',a")
a
Modified Q-Update: Q(s,a) ¢ R(s,a,s") +ymax f(Q(s',a"), N(s',d))

* Note: this propagates the “bonus” back to states that lead to unknown states as well!

@ ey ez on [Demo: exploration — Q-learning — crawler — exploratidisse fiertigsrkigk 2A1.D4)]

Example: Learning to Walk

ResetQ

Skip 30000 steps Resel speed counter

Applet Jlipse
Rur Skip 1000000 step Stop

average speed ' 3 3348581034694122

alpha H alpha++

gam

eps eps+
= |

=

1 Console 22
11:36 AM

AR e® o

BotQLearningEXP [Java Application] C:\Program Files (x86)\Java\jre7\bin\javaw.exe (Sep 27, 2012 11:36:12 AM)

-

Figure from Berkley Al

JAMES MADISON

IMILY #0055 Yeeis!

Regrets

e Even if you learn the optimal policy, you still
make mistakes along the way!

* Regret is a measure of your total mistake
cost: the difference between your (expected)
rewards, including youthful suboptimality,
and optimal (expected) rewards

* Minimizing regret goes beyond learning to
be optimal — it requires optimally learning to
be optimal

* Example: random exploration and
exploration functions both end up optimal,
but random exploration has higher regret

@ J‘trh?qEI% IEVII:\SDllng Figure from Berkley Al

Approximate Q-Learning

@ JI-}II\{I\]EIS‘B’ 2‘14\3'??" Figure from Berkley Al

Generalizing Across States

* Basic Q-Learning keeps a table of all g-values

* |n realistic situations, we cannot possibly learn about

every single state!
* Too many states to visit them all in training
* Too many states to hold the g-tables in memory

* Instead, we want to generalize:
* Learn about some small number of training states from
experience
* Generalize that experience to new, similar situations

* This is a fundamental idea in machine learning, and we’ll
see it over and over again

@ JAMES MADISON FigfgRiing BeR{epatman]

UNIVERSITYo

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]

[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
JAMES MADISON .
@ UNIVERSITY, [Demo: Q-learning — pacman — tricky E8yeteR Bsii'ek t1.D7)]

Q-Learning Pacman — Tiny — Watch All

File Edt Nawigate Search Project Run Window Help

v Q- Q-) & v v - - v - i Pydev &Y Team

11:53 AM
9/27/2012

9% E 4 W G ¥

@ J%T:EI% I:I;\&PIE?N Figure from Berkley Al

JMU

Q-Learning Pacman — Tiny — Silent Train

JAMES MADISON

UNIVERSITYo

= Pydev - Eclipse

File Edit Navigate Search

]

v :;,-.Ivv,:‘v v

CJ Console i3
<terminated> 2.0

Pacman died! Score

a

Project Run Window Help

v - - - -

Lo

5 | Pydev | 5" Team

= B8
-~
(=

11:53 AM

A ¥ o0

Figure from Berkley Al

Q-Learning Pacman — Tricky — Watch All

11:54 AM

Ry = .
L L S

@ JI-}JIVBIIEI% I:I;\gl??N Figure from Berkley Al

Feature-Based Representations

* Solution: describe a state using a vector of features
(properties)
* Features are functions from states to real numbers (often
0/1) that capture important properties of the state
 Example features:
* Distance to closest ghost
* Distance to closest dot
* Number of ghosts
e 1/ (dist to dot)?2
* |s Pacman in a tunnel? (0/1)

* |s it the exact state on this slide?

* Can also describe a g-state (s, a) with features (e.g. action
moves closer to food)

@ J/ME% l];d;\sl)llfgg\l Figure from Berkley Al

Linear Value Functions

* Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) =wi1f1(s) +wafa(s) + ...+ wnfn(s)
Q(Sa CL) — ’UJ]_f]_(S, a)—l—’UJQfQ(S, CL)"- . °+wnf’n(87 a)

* Advantage: our experience is summed up in a few powerful numbers

* Disadvantage: states may share features but actually be very different in value!

@ JI-}JIVBIIEI% I:I;\gl??N Figure from Berkley Al

Approximate Q-Learning

Q@) = wnfi(s @) tuafa(s)t Funfa(s,a)

* Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [7“ + 7 max Qs a/)} — Q(s,a)
Q(s,a) — Q(s,a) + « [difference] Exact Q's

w; <+ w; + « [difference] f;(s,a) Approximate Q’s

* [ntuitive interpretation:
* Adjust weights of active features

* E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

* Formal justification: online least squares

@ JI-}MIEI% IEVI;\SPIE?N Figure from Berkley Al

Example:

Q-Pacman

Q(s,a) =4.0fpor(s,a) — 1.0fgsr(s,a)

fDOT(S, NORTH) = 0.5

fasr(s,NORTH) = 1.0

N 4

a = NORTH /
r = —500

/ -

Q(s,NORTH) = +1

Q(Sla) =0

r + v max Q(s',a’) = —-500+0
a

[difference — —501 >

wpor +— 4.0 + a[-501]0.5
weasT +— —1.0 + o [-501] 1.0

Q(S, a) B 30fDOT(S, CI,) — 3OfGST(87 CL) [Demo: approximate Q-

@ JAMES MADISON
UNIVERSITY.

learning pacman (L11D10)]
Figure from Berkley Al

Video: Approximate Q-Learning Pacman

v Q v Q -) & v v - v - - i Pydev '=;— Team
™

S

G - a6 W

9/27/2012

@ J/ME% l];d;\sl)llfgg\l Figure from Berkley Al

Q-Learning and Least Squares

@ JQJNrI«EI?/ m:l\s!)ll??N Figure from Berkley Al

40

UNIV

Linear Approximation: Regression™

f1(x)

Prediction:

y = wg + wy f1(z)

EEEEEEE

20

Prediction:

Y; = wo + w1 f1(z) + wofo(x)

Figure from Berkley Al

Optimization: Least Squares *

total error = Z (y; — y})Q =)
i

, Error or “residual”
Observation

Prediction {g\

()

2
(yq; — Zkak(fBi)>
k

20

Figure from Berkley Al

Minimizing Error*

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y — Zwkfk(:c)>
k
0 egror(w) = — (y - Zwkfk(x)) fm(x)
Wi, .

Wi = Wm T & (y - Zwkfk(w)) fm(x)
k
Approximate q update explained:

Wm < Wm + & [7“ + max Q(Sla CL/) — Q(s, a)} fm(s,a)

“target” “prediction”

@ JI-}II\{I\]EIS‘B’ 2‘14\3'??" Figure from Berkley Al

Overfitting: Why Limiting Capacity Can Help*

/;

—L

—

@ JQJNrI«EI?/ m:l\s!)ll??N Figure from Berkley Al

{
o
() o
7

-

——_ NN

Policy Search

* Problem: often the feature-based policies that work well (win games, maximize utilities)
aren’t the ones that approximate V / Q best
e Q-learning’s priority: get Q-values close (modeling)
* Action selection priority: get ordering of Q-values right (prediction)
* WEe’'ll see this distinction between modeling and prediction again later in the course

* Solution: learn policies that maximize rewards, not the values that predict them

* Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

@ Jﬁxﬁi I:I;\gl??N Figure from Berkley Al

Policy Search

e Simplest policy search:
e Start with an initial linear value function or Q-function
* Nudge each feature weight up and down and see if your policy is better than before

* Problems:
 How do we tell the policy got better?
* Need to run many sample episodes!
* If there are a lot of features, this can be impractical

* Better methods exploit lookahead structure, sample wisely, change multiple
parameters...

@ Jﬁxﬁi I:I;\gl??N Figure from Berkley Al

Helicopter Flying

JAMES MADISON
UUUUUU SITY. Video from Andrew Ng

Conclusion

 We're done with Part |: Search and Planning!

* We've seen how Al methods can solve
problems in:
* Search
* Constraint Satisfaction Problems
* Games
* Markov Decision Problems
* Reinforcement Learning

* Next up: Part Il: Reasoning with Logic!

@ JI-}II!I“EI% IEVI;\S!)J??N Figure from Berkley Al

