
Artificial
Intelligence

CS 444 – Spring 2021
Dr. Kevin Molloy

Department of Computer Science
James Madison University Much of this lecture is taken from

Dan Klein and Pieter Abbeel AI class at UC Berkeley

Reinforcement Learning (Part 2)

• HW 6 due tonight.

• Quiz 3a will be published today after class and due before class next
Tuesday.

• HW 7 will be release over the weekend and will focus on reinforcement
learning.

• PA 3 is posted on the class website.

Announcements

2

Reinforcement Learning

Figure from Berkley AI

• We still assume an MDP:
• A set of states s Î S
• A set of actions (per state) A
• A model T(s,a,s’)
• A reward function R(s,a,s’)

• Still looking for a policy p(s)

• New twist: don’t know T or R, so must try out actions

• Big idea: Compute all averages over T using sample outcomes

The Story So Far: MDPs and RL

Figure from Berkley AI

Known MDP: Offline Solution

Goal Technique

Compute V*, Q*, p* Value / policy iteration

Evaluate a fixed policy p Policy evaluation

Unknown MDP: Model-Based Unknown MDP: Model-Free

Goal Technique

Compute V*, Q*, p* VI/PI on approx. MDP

Evaluate a fixed policy p PE on approx. MDP

Goal Technique

Compute V*, Q*, p* Q-learning

Evaluate a fixed policy p Value Learning

Model-Free Learning

Figure from Berkley AI

• Model-free (temporal difference) learning
• Experience world through episodes

• Update estimates each transition

• Over time, updates will mimic Bellman updates

r

a
s

s, a

s’
a’

s’, a’

s’’

Q-Learning

Figure from Berkley AI

• We’d like to do Q-value updates to each Q-state:

• But can’t compute this update without knowing T, R

• Instead, compute average as we go
• Receive a sample transition (s,a,r,s’)
• This sample suggests

• But we want to average over results from (s,a) (Why?)
• So keep a running average

Q-Learning Properties

Figure from Berkley AI

• Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

• This is called off-policy learning

• Caveats:
• You have to explore enough
• You have to eventually make the learning rate

small enough
• … but not decrease it too quickly
• Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning – auto – cliff grid (L11D1)]

Example: Q-Learning Auto Cliff Grid

Figure from Berkley AI

Exploration vs. Exploitation

Figure from Berkley AI

How to Explore?

Figure from Berkley AI

• Several schemes for forcing exploration
• Simplest: random actions (e-greedy)

• Every time step, flip a coin
• With (small) probability e, act randomly
• With (large) probability 1-e, act on current policy

• Problems with random actions?
• You do eventually explore the space, but keep thrashing around

once learning is done
• One solution: lower e over time
• Another solution: exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)]
[Demo: Q-learning – epsilon-greedy -- crawler (L11D3)]

Demo Q-Learning – Manual Exploration – Bridge Grid

Figure from Berkley AI

Q-Learning – Epsilon Greedy - Crawler

Figure from Berkley AI

Exploration Functions

Figure from Berkley AI

• When to explore?
• Random actions: explore a fixed amount
• Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring

• Exploration function
• Takes a value estimate u and a visit count n, and

returns an optimistic utility, e.g.

• Note: this propagates the “bonus” back to states that lead to unknown states as well!

Modified Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

Example: Learning to Walk

Figure from Berkley AI

Regrets

Figure from Berkley AI

• Even if you learn the optimal policy, you still
make mistakes along the way!

• Regret is a measure of your total mistake
cost: the difference between your (expected)
rewards, including youthful suboptimality,
and optimal (expected) rewards

• Minimizing regret goes beyond learning to
be optimal – it requires optimally learning to
be optimal

• Example: random exploration and
exploration functions both end up optimal,
but random exploration has higher regret

Approximate Q-Learning

Figure from Berkley AI

Generalizing Across States

Figure from Berkley AI

• Basic Q-Learning keeps a table of all q-values

• In realistic situations, we cannot possibly learn about
every single state!
• Too many states to visit them all in training
• Too many states to hold the q-tables in memory

• Instead, we want to generalize:
• Learn about some small number of training states from

experience
• Generalize that experience to new, similar situations
• This is a fundamental idea in machine learning, and we’ll

see it over and over again

[demo – RL pacman]

Example: Pacman

Figure from Berkley AI

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

Let’s say we discover
through experience

that this state is bad:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

Q-Learning Pacman – Tiny – Watch All

Figure from Berkley AI

Q-Learning Pacman – Tiny – Silent Train

Figure from Berkley AI

Q-Learning Pacman – Tricky – Watch All

Figure from Berkley AI

Feature-Based Representations

Figure from Berkley AI

• Solution: describe a state using a vector of features
(properties)
• Features are functions from states to real numbers (often

0/1) that capture important properties of the state
• Example features:

• Distance to closest ghost
• Distance to closest dot
• Number of ghosts
• 1 / (dist to dot)2

• Is Pacman in a tunnel? (0/1)
• …… etc.
• Is it the exact state on this slide?

• Can also describe a q-state (s, a) with features (e.g. action
moves closer to food)

Linear Value Functions

Figure from Berkley AI

• Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

• Advantage: our experience is summed up in a few powerful numbers

• Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

Figure from Berkley AI

• Q-learning with linear Q-functions:

• Intuitive interpretation:
• Adjust weights of active features
• E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

• Formal justification: online least squares

Exact Q’s

Approximate Q’s

Example: Q-Pacman

Figure from Berkley AI

[Demo: approximate Q-
learning pacman (L11D10)]

Video: Approximate Q-Learning Pacman

Figure from Berkley AI

Q-Learning and Least Squares

Figure from Berkley AI

Linear Approximation: Regression*

Figure from Berkley AI

0 20
0

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Prediction: Prediction:

Optimization: Least Squares *

Figure from Berkley AI

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error*

Figure from Berkley AI

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y, and weights w:

“target” “prediction”

Overfitting: Why Limiting Capacity Can Help*

Figure from Berkley AI

Policy Search

Figure from Berkley AI

• Problem: often the feature-based policies that work well (win games, maximize utilities)
aren’t the ones that approximate V / Q best
• Q-learning’s priority: get Q-values close (modeling)
• Action selection priority: get ordering of Q-values right (prediction)
• We’ll see this distinction between modeling and prediction again later in the course

• Solution: learn policies that maximize rewards, not the values that predict them

• Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

Figure from Berkley AI

• Simplest policy search:
• Start with an initial linear value function or Q-function
• Nudge each feature weight up and down and see if your policy is better than before

• Problems:
• How do we tell the policy got better?
• Need to run many sample episodes!
• If there are a lot of features, this can be impractical

• Better methods exploit lookahead structure, sample wisely, change multiple
parameters…

Helicopter Flying

Video from Andrew Ng

Conclusion

Figure from Berkley AI

• We’re done with Part I: Search and Planning!

• We’ve seen how AI methods can solve
problems in:
• Search
• Constraint Satisfaction Problems
• Games
• Markov Decision Problems
• Reinforcement Learning

• Next up: Part II: Reasoning with Logic!

