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Al Roadmap

* We have completed Searching and Planning

* We have completed Knowledge Representation

How to overcome limitations of Logic? We will
explore probabilistic reasoning.

* Diagnosis

Speech recognition

Robot mapping

Genetics

@ JAMES MADISON 2
UNIVERSITY.



Plan for Today

* Probability

 Random Variables

Joint and Marginal Distributions
Conditional Distribution

Product Rule, Chain Rule, Bayes’ Rule
Inference

Independence

* You'll need all this stuff A LOT for the next
few weeks, so make sure you go over it
now!

@ JAMES MADISON
UNIVERSITY.



JMU

* Aghostisin the grid

somewhere
* Sensor readings tell

how

close a square is to the

ghost
* On the ghost: red

* 1 or 2 away: orange

* 3 or 4 away: yellow
* 5+ away: green

Inference

= Sensors are noisy, but we know P(Color | Distance)

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
0.05 0.15 0.5 0.3
JAMES MADISON
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Uncertainty

e General situation:

* Observed variables (evidence): Agent knows certain
things about the state of the world (e.g., sensor
readings or symptoms)

* Unobserved variables: Agent needs to reason about
other aspects (e.g. where an object is or what disease is
present)

* Model: Agent knows something about how the known
variables relate to the unknown variables

* Probabilistic reasoning gives us a framework for
managing our beliefs and knowledge

@ JAMES MADISON
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Random Variables

* Arandom variable is some aspect of the world about which we
(may) have uncertainty

e R=Isitraining?

e T=lIsit hot or cold?

D =How long will it take to drive to work?
* L=Where is the ghost?

* We denote random variables with capital letters

* Like variables in a CSP, random variables have domains

* Rin {true, false} (often write as {+r, -r})

* Tin {hot, cold}

* Din [0, )

* Lin possible locations, maybe {(0,0), (0,1), ...}

@ JAMES MADISON
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Probability Distributions

* Associate a probability with each value

* Temperature: = Weather:

P(T) —
! i sun
hot 0.5 cain
cold 0.5 fog
meteor

@ JAMES MADISON
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Probability Distributions

 Unobserved random variables have distributions

P(W)

P(T)

P(hot) = P(T = hot),
P(cold) = P(T = cold),
P(rain) = P(W = rain),

* A distribution is a TABLE of probabilities of values

* A probability (lower case value) is a single number

P(W = rain) = 0.1

+ Musthave: Vz P(X =) >0 and ) P(X =z)=1
XT

@ JAMES MADISON
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Joint Distributions

* A joint distribution over a set of random variables: X1, Xo,...

specifies a real number for each assignment (or outcome):
P(X{=x21,Xo=xo,...Xpn = xn)

P(x1,x2,...2n)
* Must obey: P(xq1,z9,...2n) >0

> P(x1,z0,...2n) = 1
(LEl?va"'xn)

e Size of distribution if n variables with domain sizes d?

* For all but the smallest distributions, impractical to write out!

@ JAMES MADISON
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Probabilistic Models

* A probabilistic model is a joint distribution Distribution over T,W

over a set of random variables

T W P
hot sun 0.4

* Probabilistic models:
* (Random) variables with domains hot rain 0.1
e Assignments are called outcomes

cel e e , cold sun 0.2
e Joint distributions: say whether assignments
(outcomes) are likely cold rain 0.3
* Normalized: sum to 1.0
* |deally: only certain variables directly interact Constraint over TW
T W P
* Constraint satisfaction problems:
: . : hot sun T
e Variables with domains
* Constraints: state whether assignments are hot rain F
possible d .
* |deally: only certain variables directly interact o oun
cold rain T

@ JAMES MADISON 10
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Events

* An event is a set E of outcomes

P(E)Y= )  P(z1...zn)

* From a joint distribution, we can
calculate the probability of any event

* Probability that it’s hot AND sunny?
* Probability that it’s hot?

* Probability that it’s hot OR sunny?

* Typically, the events we care about are
partial assignments, like P(T=hot)

@ JAMES MADISON
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Quiz

¢ P+, +y) ? P(X,Y)
X Y P
+X +y 0.2
* P(+x) ? +X -y 0.3
-X +y 0.4
-X -y 0.1

* P(-y OR +x) ?

JAMES MADISON
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Marginal Distributions

* Marginal distributions are sub-tables which eliminate variables

* Marginalization (summing out): Combine collapsed rows by adding

P(T)

P(T, W)

—

P(t) = Z P(t, s)

P(W)

—

P(s) =) P(t,s)
t

P(X1=uz1) =) P(X1=u11,Xp =)
R

@ JAMES MADISON
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Quiz: Marginal Distributions

P(X)

P(X,Y)

——
P(x) =) P(z,y)
Yy

P(Y)

—_—
P(y) = > P(z,y)

@ JAMES MADISON 14
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Conditional Probabilities

* Asimple relation between joint and conditional probabilities
* |In fact, this is taken as the definition of a conditional probability

P(a,b)
P(a,b
Palb) = (a,b)
P(b)
P(T, W) i

T W P o . P(WZS,TIC)_O.Q

hot sun 0.4 P(W = s|T'=c) = P(T = ¢) 0.5 =04
hot rain 0.1 %
cold sun 0.2 =P(W=s,T=c¢c)+P(W=nr,T=c)
cold rain 0.3 = 0.2 0.3 =0.5




JMU
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X Y P
+X +y 0.2
+X -y 0.3
-X +y 0.4
-X -y 0.1
JAMES MADISON

Quiz: Conditional Probabilities

* P(+x | +y)?

* Plx | +y)?

* P(-y | +x) ?
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Conditional Distributions

* Conditional distributions are probability distributions over
some variables given fixed values of others

P(W|T)

JMU

—

- P(W|T = hot)

P(W|T = cold)

JAMES MADISON
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P(T, W)
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Normalization Trick

P(W =s,T =c)

P(T = c¢)
. P(W =s,T =¢)
P(T,W) - PW=sT=c¢c)+PW=r,T=c)

0.2
= = 0.4
0.24 0.3

P(W =s|T =¢) =

P(W|T = ¢)

—

P(W =nr,T =c¢)
P(T = c¢)
. P(W =nr,T =c)
- PW=sT=c¢c)+PW=nr,T=2c)

0.3
= = 0.6
0.2+4+0.3

P(W =7rT =c¢) =

@ JAMES MADISON
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Normalization Trick

P(W=s,T=c)
P(T =c¢)
P(W =sT=c)

T PW=sT=c)+PW=nT=c)
0.2

P(W =s|T=c¢c) =

=m:o.4
P(T, W) SELECT the joint NORMALIZE the
probabilities selection .
matchingthe (¢, W) (make it sum to one) PWI|T = c)
evidence
ﬁ ﬂ

P(W=nrT=c)

P(T =c¢)
. P(W=nrT=c)
T PW=s,T=c)+PW=rT=c)
03
02403

@ JAMES MADISON 19
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Normalization Trick

P(T, W) SELECT the joint NORMALIZE the
probabilities selection
matching the P(c, W) (make it sum to one)

evidence
ﬁ ﬂ

* Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

P(x1|xs) =

P(zy,x2) _  P(x1,22)

@ JAMES MADISON
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P(W|T = ¢)
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Quiz: Normalization Trick

* P(X| Y=-y) ?

P(X,Y) SELECT the joint NORMALIZE the
probabilities selection
matching the (make it sum to one)

evidence
ﬁ ﬂ

@ JAMES MADISON
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To Normalize

 (Dictionary) To bring or restore to a formal condition

X

All entries sum to ONE

* Procedure:
e Step 1: Compute Z = sum over all entries
e Step 2: Divide every entry by Z

 Example 1
Normalize
| Normalize
ﬁ
Z=0.5 72150

@ JAMES MADISON
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Probabilistic Inference

* Probabilistic inference: compute a desired ) Y
probability from other known probabilities (e.g. .
conditional from joint) L///

* We generally compute conditional probabilities
* P(ontime | no reported accidents) = 0.90

* These represent the agent’s beliefs given the evidence

* Probabilities change with new evidence:
* P(ontime | no accidents, 5a.m.) =0.95

* P(ontime | no accidents, 5 a.m., raining) = 0.80 (ﬁ\\% ‘ <R

e Observing new evidence causes beliefs to be updated

@ JAMES MADISON
UNIVERSITY.
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Inference by Enumeration

* Works fine with

* General case: = We want: multiple query
. Eviden:e vafrislbles: Ey...Ep=e1...€ Xq1,X0,...Xn P variables, too
Q}Jery var.|a e @ All variables (Q|€1 ce 6k)
* Hidden variables: H,...Hy
= Step 1: Select the = Step 2: Sum out H to get joint = Step 3: Normalize
entries consistent of Query and evidence

with the evidence

1
><_
A

Z=ZP(Q,€1---ek)

Z P(Cz,hl...hr,el...e/k) q .
hi...hy
! Xl,X;/...Xn P(Q|61"'6k3):EP(Qael"'ek)

@ JAMES MADISON »
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* P(W)?

 P(W | winter)?

 P(W | winter, hot)?

JMU

JAMES MADISON

UNIVERSITYo

Inference by Enumeration

S T W P
summer | hot sun 0.30
summer | hot rain 0.05
summer | cold sun 0.10
summer | cold rain 0.05
winter hot sun 0.10
winter hot rain 0.05
winter | cold sun 0.15
winter | cold rain 0.20

25
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Inference by Enumeration

= QObvious problems:

= Worst-case time complexity O(d")

= Space complexity O(d") to store the joint distribution

JAMES MADISON

UNIVERSITYo
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The Product Rule

* Sometimes have conditional distributions but want the joint

P(y)P(x|y)

«~ Il

P(a:,y) @) PGy =

P(z,y)

P(y)

27



* Example:

P(W)

The Product Rule
P(y)P(z|ly) = P(x,y)

P(D|W) P(D, W)




The Chain Rule

* More generally, can always write any joint distribution as an
incremental product of conditional distributions

P(xy,x0,23) = P(x1)P(z2|x1)P(x3|r1,22)

P(z1,x2,...xzn) = || P(ailzy ... 2-1)
7

* Why is this always true?

@ JAMES MADISON
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Bayes Rule




Bayes' Rule

* Two ways to factor a joint distribution over two variables:
P(z,y) = P(z|ly)P(y) = P(ylz)P(x)

* Dividing, we get:

P(y|z)
P(y)
* Why is this at all helpful?

P(zly) = P(x)

* Lets us build one conditional from its reverse
* Often one conditional is tricky but the other one is simple
* Foundation of many systems we’ll see later (e.g. ASR, MT)

* In the running for most important Al equation!

@ JAMES MADISON
UNIVERSITY.
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Inference with Bayes' Rule

* Example: Diagnostic probability from causal probability:

P(effect|cause) P(cause)
P(effect)

P(causel|effect) =

* Example:
* M: meningitis, S: stiff neck
P(4+m) = 0.0001 I
xample
P("“S‘ + m) =08 givens
P(+s| —m) = 0.01_

P(+s| +m)P(+m) P(+s|+ m)P(+m) B 0.8 x 0.0001
P(+s) - P(4s|+m)P(+m) + P(+s| —m)P(—m) 0.8 x 0.0001 + 0.01 x 0.999

P(+m|+s) =

* Note: posterior probability of meningitis still very small
* Note: you should still get stiff necks checked out! Why?

@ JAMES MADISON 32
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Quiz: Bayes' Rule

: P(D\W
* Given: (D|W)
P(W) D W P
R - wet sun 0.1
un 08 dry sun 0.9
cain 02 wet rain 0.7
dry rain 0.3

 What is P(W | dry) ?

@ JAMES MADISON
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Ghostbusters, Revisited

* Let’s say we have two distributions:

* Prior distribution over ghost location: P(G)
e Let’s say this is uniform
» Sensor reading model: P(R | G)
* Given: we know what our sensors do
* R =reading color measured at (1,1)
 E.g. P(R=yellow | G=(1,1)) =0.1

* We can calculate the posterior distribution

P(G|r) over ghost locations given a reading
using Bayes’ rule:

P(g|r) o< P(r|g)P(g)

@ JAMES MADISON
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